Stack Model:
Stores a set of elements in a particular order Accessed in Last-In-First-Out (LIFO) fashion.

[image: image1.png]|
STACK S | pushe)

v push, outputis by pop

| top 2
{41
i
{3
{16}

Stack model: only the top element is accessible

Main Stack Operations:

Push():Inserts an element on top of the stack.

Pop(): Removes and returns the last inserted element.
Auxiliary stack operations:

Top() : Returns the last inserted element without removing it.

Size(): Returns the number of elements stored on the stack..

 IsEmpty(): Indicates whether no elements are stored.

Size()

 return t

pop()

 if isEmpty() then

 Write(" UnderFlowStack")
 else

 return S[t]
 t ← t − 1
 push(x)

 if t = S.length − 1 then

 Write("OverFlowStack")
 else

 t ← t + 1

 S[t] ← x

top()

 if isEmpty() then

 write(" UnderFlowStack")
 else

 return S[t]
 isEmpty() return t==0

Implementation of Stacks :
We will give two popular implementations. One uses pointers (linked list)and the other uses an array.

Linked List Stack Implementation
Benefits

 • Avoids maximum stack size restriction

 • Only allocates memory for stack elements actually used

How

 • Allocate a node for each stack element

 • Nodes are chained together by reference to next node in the chain
Array-based Stack Implementation

- Allocate array of some size ,which is the Maximum elements in
 stack.

- Bottom stack element stored at index 0 .

- First index tells which element is the top .

- Increment first when element pushed, decrement when pop’d
Queue model

The Queue ADT stores arbitrary objects . Insertions and deletions follow the first-in first-out scheme .

Insertions are at the rear of the queue and removals are at the front of the queue.
Main queue operations:
- Enqueue(object): inserts an element at the end of the queue

-Object Dequeue(): removes and returns the element at the front of the queue.

Auxiliary queue operations:

-object front(): returns the element at the front without removing it.
-integer size(): returns the number of elements stored .
-boolean isEmpty(): indicates whether no elements are stored .
Array-based Queue
[image: image2.png]

Use an array of size N in a circular fashion .Two variables keep track of the front and rear.
f index of the front element

r index immediately past the rear element

Array location r is kept empty

Queue Operations
We use the modulo operator (remainder of division)

size()

return (N − f + r) mod N

 isEmpty()

return (f = r)

 Enqueue(x)

 if size() = N − 1 then

 write ('Queue is Full')
 else

 Q[r] ← x
 r ← (r + 1) mod N
Dequeue()

 if isEmpty() then

 write(' Queue is Empty ')
 else

 x ← Q[f]

 f ← (f + 1) mod N

 return x
Queue
Stores a set of elements in a particular order .

-Insertions and deletions follow the first-in first-out scheme
-Insertions are at the rear of the queue and removals are at the front of the queue
[image: image3.png]normal configuration

Q TTTTTTTTTTT
012 f B

wrapped aound configuration

o [T [TTT711]
012 7

Main Queue Operations
En_queue(o)
Insert the object o at rear of the queue

Insert(x):

A[rear] ← x

rear ←(rear+1) mod N

Dequeue()
Remove object from front of queue

Remove():

x ← A[front]

front ←(front) mod N

return x
size(): number of elements

isEmpty(): size == 0?

front(): look at object at front of queue

Array-based Queue Implementation
- Array of fixed size

- Index array element for front and rear of queue

-Indices “wrap around” when they cross end of array

List Queue Implementation

- Head and tail node references for front and rear of queue

-Insert at tail, remove from head

• Remove from tail too slow for singly linked list

-Updating tail reference with new tail takes full traversal

• So use tail of list for rear of queue
PAGE
1

