[image: image1.emf][image: image2.emf][image: image3.emf]

16 Instruction Types

Instruction sets provide different types of instructions. We describe some of these instruction types here.
Data Movement Instructions:
All instruction sets support data movement instructions. The type of instructions supported depends on the architecture. We can divide these instructions into two groups: instructions that facilitate movement of data between memory and registers and between registers. Some instruction sets have special data movement instructions. For example, the Pentium has special instructions such as push and pop to move data to and from the stack.

In RISC processors, data movement between memory and registers is restricted to load and store instructions. Some RISC processors do not provide any explicit instructions to move data between registers. This data transfer is accomplished indirectly. For example, we can use the add instruction
add Rdest,Rsrc,0 /* Rdest= Rsrc + 0 */

to copy contents of Rsrc to Rdest. The Pentium provides an explicit mov instruction to copy data. The instruction

mov dest,src
copies the contents of src to dest. The src and dest can be either registers or memory. In addition, src can be a constant. The only restriction is that both src and dest cannot be located in memory. Thus, we can use the mov instruction to transfer data between registers as well as between memory and registers.

Arithmetic and Logical Instructions:
Arithmetic instructions support floating-point as well as integer operations. Most processors provide instructions to perform the four basic arithmetic operations: addition, subtraction, multiplication, and division. Since the 2s complement number system is used, addition and subtraction operations do not need separate instructions for unsigned and signed integers. However, the other two arithmetic operations need separate instructions for signed and unsigned numbers.
Some processors do not provide division instructions, whereas others support only partially. What do we mean by partially? Remember that the division operation produces two outputs: a quotient and a remainder. We say that the division operation is fully supported if the division instruction produces both results. For example, the Pentium and MIPS provide full division support. On the other hand, the SPARC and PowerPC only provide the quotient, and the Itanium does not support the division instruction at all.

Logical instructions provide the basic bit- wise logical operations. Processors typically provide logical and and or operations. Other logical operations including the not and xor operations are supported by most processors. Most of these instructions set the condition code bits, either by default or when explicitly instructed. The common condition code bits, which record the status of the most recent operation, Are
S —Sign bit (0 = positive, 1 = negative);

Z — Zero bit (0 = nonzero value, 1 = zero value);

O —Overflow bit (0 = no overflow, 1 = overflow);

C— Carry bit (0 = no carry, 1 = carry).
The sign bit is updated to indicate whether the result is positive or negative. Since the most significant bit indicates the sign, the S bit is a copy of the sign bit of the result of the last operation. The zero bit indicates whether the last operation produced a zero or nonzero result. This bit is useful in comparing two values. For example, the Pentium instructions
cmp count,25 /* compare count to 25 */

je target /* if equal, jump to target*/

compare the value of count to 25 and set the condition code bits. The jump instruction checks the zero bit and jumps to target if the zero bit is set (i.e., Z = 1). Note that the cmp instruction actually subtracts 25 from count and sets the Z bit if the result is zero. The overflow bit records the overflow condition when the operands are signed numbers. The carry bit is set if there is a carry out of the most significant bit. The carry bit indicates an overflow when the operands are unsigned numbers.

In the Pentium, the condition code bits are set by default. In other processors, two versions of arithmetic and logical instructions are provided. For example, in the SPARC processor, ADD does not update the condition codes, whereas the ADDcc instruction updates the condition codes.
Flow Control and I/O Instructions:

The flow control instructions include the branch and procedure calls before. Interrupt is another flow control mechanism. The type of input/output instructions provided by processors varies widely from processor to processor. The main characteristic that influences the I/O instructions is whether the processor supports isolated or memory-mapped I/O. Recall that isolated I/O requires special I/O instructions whereas memory-mapped I/O can use the data movement instructions to move data to or from the I/O devices.

Most processors support memory-mapped I/O. The Pentium is an example of a processor that supports isolated I/O. Thus, it provides separate instructions to perform input and output. The in instruction can be used to read a value from an I/O port into a register. For example, the instruction

in AX,io_port

reads a 16-bit value from the specified I/O port. Similarly, the out instruction

out io_port,AX

writes the 16-bit value in the AX register to the specified I/O port.
17 Instruction Formats

Processors use two types of basic instruction format: fixed-length or variable-length instructions. In the fixed-length encoding, all (or most) instructions use the same size instructions. In the latter encoding, the length of the instructions varies quite a bit. Typically, RISC processors use fixed-length instructions, and the CISC designs use variable-length instructions.

All 32-bit RISC processors use instructions that are 32-bits wide. Some examples are the SPARC, MIPS, and PowerPC processors. The Intel Itanium, which is a 64-bit processor, uses fixed-length, 41-bit wide instructions.
The size of the instruction depends on the number of addresses and whether these addresses identify registers or memory locations. Figure 21 shows how the size of the instruction varies with the number of addresses when all operands are located in registers. This format assumes that eight bits are reserved for the operation code (opcode). Thus we can have 256 different instructions. Each operand address is five bits long, which means we can have 32 registers. This is the case in processors like the MIPS. The Itanium, for example, uses seven bits as it has 128 registers.

As you can see from this figure, using fewer addresses reduces the length of the instruction. The size of the instruction also depends on whether the operands are in memory or in registers. As mentioned before, RISC processors keep their operands in registers. In CISC processors like the Pentium, operands can be in memory. If we use 32-bit memory addresses for each of the two addresses, we would need 72 bits for each instruction (see Figure 22) whereas the register-based instruction requires only 18 bits. For this and other efficiency reasons, the Pentium does not permit both addresses to be memory addresses. It allows at most one address to be a memory address.

The Pentium, which is a CISC processor, encodes instructions that vary from one byte to

several bytes. Part of the reason for using variable length instructions is that CISC processors

tend to provide complex addressing modes. For example, in the Pentium, if we use register-

based operands, we need just 3 bits to identify a register. On the other hand, if we use a memory-based operand, we need up to 32 bits. In addition, if we use an immediate operand,

we need a further 32 bits to encode this value into the instruction. Thus, an instruction that

uses a memory address and an immediate operand needs 8 bytes just for these two components. You can realize from this description that providing flexibility in specifying an operand leads to dramatic variations in instruction sizes.

The opcode is typically partitioned into two fields: one identifies the major operation type, and the other defines the exact operation within that group. For example, the major operation could be a branch operation, and the exact operation could be “branch on equal.”
�

Microprocessors

2nd stage

17-3-2011

College of sciences for women ((())) Dept. of computer sciences

Year 2010-2011

Figure 21 Instruction sizes for the four formats: This format assumes that the operands are located in registers.

�

Lec. (12)

Figure 22 Instruction size depends on whether the operands are in registers or memory.

�

TABLE 4 Some Common Data Movement Operations

PAGE
Lecturer: Salah Mahdi Saleh

