Binary Trees
A binary tree is made of nodes, where each node contains a "left" pointer, a "right" pointer, and a data element. The "root" pointer points to the topmost node in the tree. The left and right pointers recursively point to smaller "subtrees" on either side. A null pointer represents a binary tree with no elements -- the empty tree.
[image: image1.png]left subtree
pointers

root node

In C the binary tree is built with a node type like this
struct node
{

 int data;

 struct node* left;

 struct node* right;

}

Lookup() function
Given a binary search tree and a "target" value, search the tree to see if it contains the target.
int lookup(node* root, int target)
{

 if (root == NULL) return 0;

 if (target == root->data) return 1;

 if (target < root->data)
 return(lookup(root->left, target));

 else
 return(lookup(root->right, target));

}

Note : The lookup() algorithm could be written as a while-loop that iterates down the tree. We leave this as a homework.
Insert()

By given a binary search tree and a number, we insert a new node with the given number into the tree in the correct place.
[image: image2.png]2

/N
1 10

returns the tree...
2

/N
1 10

/
5

node* NewNode(int data)
{

 node* node = new(node);
 node->data = data;

 node->left = NULL;

 node->right = NULL;

 return(node);

}

node* insert(node* node, int data) {

if (node == NULL)
 return(newNode(data));

if (data <= node->data)
 node->left = insert(node->left, data);

else
 node->right = insert(node->right, data);

return(node);
}

build123()

[image: image3.png]/N

This is a very basic problem with a little pointer manipulation. (You can skip this problem if you are already comfortable with pointers.) Write code that builds the following binary tree
Write the code in three different ways...

a: by calling newNode() three times, and using three pointer variables

b: by calling newNode() three times, and using only one pointer variable

c: by calling insert() three times passing it the root pointer to build up the tree
// a: call newNode() three times

 node* build123a()
{

 node* root = newNode(2);

 node* lChild = newNode(1);

 node* rChild = newNode(3);

 root->left = lChild;

 root->right= rChild;

 return(root);

}

// b-call newNode() three times, and use only one local variable

 node* build123b()
{

 node* root = newNode(2);

 root->left = newNode(1);

 root->right = newNode(3);

 return(root);

}

/*

c-Build 123 by calling insert() three times.

Note that the '2' must be inserted first.

*/

node* build123c()
{

 node* root = NULL;

 root = insert(root, 2);

 root = insert(root, 1);

 root = insert(root, 3);

 return(root);

}

size()

Given a binary tree, count the number of nodes in the tree.

int size(node* nod)
{

 if (nod==NULL) return 0 ;
 return(size(nod->left)+1+size(nod->right));

}

maxDepth()

Given a binary tree, compute its "maxDepth" -- the number of nodes along the longest path from the root node down to the farthest leaf node. The maxDepth of the empty tree is 0.
int maxDepth(node* nod)
{

 if (nod==NULL) return 0;

 int lDepth = maxDepth(nod->left);

 int rDepth = maxDepth(nod->right);

 if (lDepth > rDepth) return(lDepth+1);

 return(rDepth+1);

}

minValue()

Given a non-empty binary search tree (an ordered binary tree), return the minimum data value found in that tree.

Note :This can be solved with recursion or with a simple while loop.

int minValue(node* nod)
{

node* current = nod;

while (current->left != NULL)
 current = current->left;

return(current->data);

}
printTree()

[image: image4.png]/N
/\

Given ordered binary tree , iterate over the nodes to print them out in increasing order. So the tree...
Produces the output "1 2 3 4 5".
This is known as an "inorder" traversal of the tree.
void printTree(node* nod)
{

 if (nod == NULL) return;

 printTree(nod->left);

 printf("%d ", nod->data);

 printTree(nod->right);

}

printPostorder()

Given a binary tree, print out the nodes of the tree according to "postorder" traversal. Both subtrees of a node are printed out completely before the node itself is printed, and each left subtree is printed before the right subtree. So the same tree Produces the output "1 3 2 5 4".

void printPostorder(node* nod)
{

if (nod == NULL) return;

printTree(nod->left);

printTree(nod->right);

printf("%d ", nod->data);

}

Note: Write a preorder function that prints in the following order :

the node itself, left subtree , and right subtree .
maxValue()

Given a non-empty binary search tree (an ordered binary tree), return the minimum data value found in that tree.

Note :This can be solved with recursion or with a simple while loop.

int maxValue(node* nod)
{

node* current = nod;

while (current->right != NULL)
 current = current->right;

return(current->data);

}
hasPathSum()
Given a tree and a sum, return true if there is a path from the root down to a leaf, such that adding up all the values along the path equals the given sum. the following tree has exactly four root-to-leaf paths:
[image: image5.png]

Root-to-leaf paths:

path 1: 5 4 11 7

path 2: 5 4 11 2

path 3: 5 8 13

path 4: 5 8 4 1

For this problem, we will be concerned with the sum of the values of such a path -- for example,
the sum of the values on the 5-4-11-7 path is
5 + 4 + 11 + 7 = 27.
int Has_Path_Sum(node* root,int sum)
 {
 if(root==NULL) return (sum==0);
 int sum1=sum-root->data;
 return (Has_Path_Sum(root->left,sum1))||

 (Has_Path_Sum(root->right,sum1));
 }

mirror()

Change a tree so that the roles of the left and right pointers are swapped at every node. So the tree

[image: image6.png]/N
/N

[image: image7.png]TRUE

FALSE, because the 6
is not ok to the left

of the 5

TRUE

FALSE, the 6 is ok with
the 2, but the 6 is not ok
with the 5

 is changed to

void mirror(node* root)
 {
 if(root==NULL) return;
 mirror(root->left);
 mirror(root->right);
 node* temp;
 temp=root->left;
 root->left=root->right;
 root->right=temp;
 }
sameTree()

Given two binary trees, return true if they are structurally identical -- they are made of nodes with the same values arranged in the same way
int sameTree(node* root1, node* root2(
 {
 if(root1==NULL && root2==NULL) return true;
 if(root1!=NULL && root2!=NULL(
 return((root1->data==root2->data)&&

 (sameTree(root1->left,root2->left)(
 &&sameTree(root1->right,root2->right(((;
 return false;
 }

Binary Search Tree Checking:
This background is used by the next two problems: Given a plain binary tree, examine the tree to determine if it meets the requirement to be a binary search tree. To be a binary search tree, for every node, all of the nodes in its left tree must be <= the node, and all of the nodes in its right subtree must be > the node. Consider the following four examples
[image: image8.png]

isBST()

Suppose you have helper functions minValue() and maxValue() that return the min or max int value from a non-empty tree Write an isBST() function that returns true if a tree is a binary search tree and false otherwise.
int isBST(node* node)
{
 if (node==NULL) return(true(
 if (node->left!=NULL && MinValue(node->left) > node->data)
 return(false);
 if (node->right!=NULL && MaxValue(node->right) <= node->data)
 return(false);
 return (isBST(node->left) && isBST(node->right));
}
Write a C program to create a copy of a tree.
node *copy(node *root)
{
 node *temp;
 if(root==NULL)return NULL;
 temp = new(node);
 temp->value = root->value;
 temp->left = copy(root->left);
 temp->right = copy(root->right);
 return(temp);
}
Deletion

Deleting an item from a binary search tree is a little harder than inserting one. Before we write any code, let’s consider how to delete nodes from a binary search tree in an abstract fashion.

Here’s a BST from which we can draw examples during the discussion. Here, we recognize three distinct cases.

[image: image9.png]

Case 1: p has no right child:

It is trivial to delete a node with no right child, such as node 1, 4, 7, or 8 above. We replace the pointer leading to p by p’s left child. In other words, we replace the deleted node by its left child. For example, the process of deleting node 8 looks like this:

[image: image10.png]

Case 2: p’s right child has no left child:

[image: image11.png]

This case deletes any node p with a right child r that itself has no left child. Nodes 2, 3, and 6 in the tree above are examples. For instance, to delete node 2 in the tree above, we can replace it by its right child 3, giving node 2’s left child 1 to node 3 as its new left child. The process looks like this:

Case 3: p’s right child has a left child:

Let p’s inorder successor, that is, the node with the smallest value greater than p, be s Then, our strategy is to detach s from its position in

the tree, which is always an easy thing to do, and put it into the spot formerly occupied by p, which disappears from the tree. In our example, to delete node 5, we move inorder successor node 6 into its place, like this:

[image: image12.png]

The code for BST deletion closely follows the above discussion. Let’s start with an outline of the function:

Step 1: Find BST node to delete .
Step 2: Delete BST node .
Step 3: Finish up after deleting BST node .

This code is
void Delete(node** root,int val)
 {
 node *q,*parent,*cur,*parsuc,*suc;
 cur=*root;
 while(cur!=NULL && cur->data!=val)
 {
 parent=cur;
 if(val>cur->data)

cur=cur->right;
 else

 cur=cur->left;
 }
 if(cur==NULL) return;
 q=cur;
 if(cur->left==NULL)

cur=cur->right;
 else if(cur->right==NULL)

cur=cur->left;
 else

 {
 parsuc=cur->right;
 suc=parsuc;
 while(suc->left!=NULL)

{

 parsuc=suc;

 suc=suc->left;

}
 if(parsuc!=suc)
 {

 parsuc->left=suc->right;

 suc->right=cur->right;
 }
 suc->left=cur->left;
 cur=suc;
 }
 if(parent->left==q)

parent->left=cur;
 else if(parent->right==q)

parent->right=cur;
 else

*root=cur;
 free(q);
 }

Exercise:

Redraw the following trees after the node with key value 16 has been deleted.
[image: image13.png]

`
Solution:
PAGE
10

