Algorithms

One of the most important concepts in mathematics is that of a function. The terms “map,” “mapping,”
“transformation,” and many others mean the same thing; the choice of which word to use in a given situation is
usually determined by tradition and the mathematical background of the person using the term.
Related to the notion of a function is that of an algorithm. The notation for presenting an algorithm and a
discussion of its complexity is also covered in this chapter.

3.2	FUNCTIONS
Suppose that to each element of a set A we assign a unique element of a set B; the collection of such
assignments is called a function from A into B. The set A is called the domain of the function, and the set B is
called the target set or codomain.
Functions are ordinarily denoted by symbols. For example, let f denote a function from A into B. Then we
write
f : A → B
which is read: “f is a function from A into B,” or “f takes (or maps) A into B.” If a ∈ A, then f (a) (read: “f of a”)
denotes the unique element of B which f assigns to a; it is called the image of a under f, or the value of f at a.
The set of all image values is called the range or image of f. The image of f :	A →	B	is denoted by Ran(f ),
Im(f ) or f (A).
Frequently, a function can be expressed by means of a mathematical formula. For example, consider the
function which sends each real number into its square. We may describe this function by writing
f (x) = x2or	x → x2or	y = x2
In the ﬁrst notation, x is called a variable and the letter f denotes the function. In the second notation, the barred
arrow → is read “goes into.” In the last notation, x is called the independent variable and y is called the dependent
variable since the value of y will depend on the value of x.
Remark: Whenever a function is given by a formula in terms of a variable x, we assume, unless it is otherwise
stated, that the domain of the function is R (or the largest subset of R for which the formula has meaning) and
the codomain is R.
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EXAMPLE 3.1














Fig. 3-1



(a) Consider the function f (x) = x3, i.e., f assigns to each real number its cube. Then the image of 2 is 8, and
so we may write f (2) = 8.
(b) Figure 3-1 deﬁnes a function f from A = {a, b, c, d} into B = {r, s, t, u} in the obvious way. Here
f (a) = s,	f (b) = u,	f (c) = r,	f (d) = s
The image of f is the set of image values, {r, s, u}. Note that t does not belong to the image of f because t is
not the image of any element under f.
(c) Let A be any set. The function from A into A which assigns to each element in A the element itself is called
the identity function on A and it is usually denoted by 1A, or simply 1. In other words, for every a ∈ A,
1A(a) = a.
(d) Suppose S is a subset of A, that is, suppose S ⊆ A. The inclusion map or embedding of S into A, denoted by
i: S → A is the function such that, for every x ∈ S,
i(x) = x
The restriction of any function f: A → B, denoted by f |S	is the function from S into B such that, for any x	∈ S,
f |S(x) = f (x)

Functions as Relations
There is another point of view from which functions may be considered. First of all, every function f : A → B
gives rise to a relation from A to B called the graph of f and deﬁned by
Graph of f	= {(a, b) | a ∈ A, b = f (a)}
Two functions f : A → B and g: A →	B are deﬁned to be equal, written f	= g, if f (a) = g(a) for every
a	∈ A; that is, if they have the same graph. Accordingly, we do not distinguish between a function and its graph.
Now, such a graph relation has the property that each a in A belongs to a unique ordered pair (a, b) in the relation.
On the other hand, any relation f from A to B that has this property gives rise to a function f : A →	B, where
f (a) = b for each (a, b) in f. Consequently, one may equivalently deﬁne a function as follows:
Deﬁnition: A function f : A → B is a relation from A to B (i.e., a subset of A × B ) such that each a ∈ A belongs
to a unique ordered pair (a, b) in f.
Although we do not distinguish between a function and its graph, we will still use the terminology “graph
of f ” when referring to f as a set of ordered pairs. Moreover, since the graph of f is a relation, we can draw its
picture as was done for relations in general, and this pictorial representation is itself sometimes called the graph
of f. Also, the deﬁning condition of a function, that each a ∈ A belongs to a unique pair (a, b) in f, is equivalent
to the geometrical condition of each vertical line intersecting the graph in exactly one point.






EXAMPLE 3.2





(a) Let f : A → B be the function deﬁned in Example 3.1 (b). Then the graph of f is as follows:
{(a, s), (b, u), (c, r), (d, s)}

(b) Consider the following three relations on the set A = {1, 2, 3}:
f	= {(1, 3), (2, 3), (3, 1)},	g = {(1, 2), (3, 1)},	h = {(1, 3), (2, 1), (1, 2), (3, 1)}
f is a function from A into A since each member of A appears as the ﬁrst coordinate in exactly one ordered
pair in f; here f (1) = 3, f (2) = 3, and f (3) = 1. g is not a function from A into A since 2 ∈ A is not the
ﬁrst coordinate of any pair in g and so g does not assign any image to 2. Also h is not a function from A into
A since 1 ∈ A appears as the ﬁrst coordinate of two distinct ordered pairs in h, (1, 3) and (1, 2). If h is to be
a function it cannot assign both 3 and 2 to the element 1 ∈ A.
(c) By a real polynomial function, we mean a function f : R → R of the form
f (x) = anxn+ an−1xn−1 + · · · + a1x + a0
where the aiare real numbers. Since R is an inﬁnite set, it would be impossible to plot each point of the
graph. However, the graph of such a function can be approximated by ﬁrst plotting some of its points and then
drawing a smooth curve through these points. The points are usually obtained from a table where various
values are assigned to x and the corresponding values of f (x) are computed. Figure 3-2 illustrates this
technique using the function f (x) = x2− 2x − 3.
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Fig. 3-2


Composition Function
Consider functions f: A → B and g: B → C; that is, where the codomain of f is the domain of g. Then we
may deﬁne a new function from A to C, called the composition of f and g and written g◦f , as follows:
(g◦f )(a) ≡ g(f (a))
That is, we ﬁnd the image of a under f and then ﬁnd the image of f (a) under g. This deﬁnition is not really
new. If we view f and g as relations, then this function is the same as the composition of f and g as relations (see
Section 2.6) except that here we use the functional notation g◦f	for the composition of f and g instead of the
notation f ◦g which was used for relations.








Consider any function f: A → B. Then

f ◦1A= f	and	1B◦f	= f



where 1Aand 1Bare the identity functions on A and B, respectively.


3.3	ONE-TO-ONE, ONTO, AND INVERTIBLE FUNCTIONS
A function f :	A →	B is said to be one-to-one (written 1-1) if different elements in the domain A have
distinct images. Another way of saying the same thing is that f is one-to-one if f (a) = f (a ) implies a = a .
A function f : A → B is said to be an onto function if each element of B is the image of some element of A.
In other words, f : A → B is onto if the image of f is the entire codomain, i.e., if f (A) = B . In such a case we
say that f is a function from A onto B or that f maps A onto B.
A function f : A → B is invertible if its inverse relation f −1 is a function from B to A. In general, the inverse
relation f −1 may not be a function. The following theorem gives simple criteria which tells us when it is.
Theorem 3.1:	A function f: A → B is invertible if and only if f is both one-to-one and onto.
If f : A → B is one-to-one and onto, then f is called a one-to-one correspondence between A and B. This
terminology comes from the fact that each element of A will then correspond to a unique element of B and vice
versa.
Some texts use the terms injective for a one-to-one function, surjective for an onto function, and bijective for
a one-to-one correspondence.

EXAMPLE 3.3	Consider the functions f1:A → B, f2:B → C, f3:C → D and f4:D → E deﬁned by the
diagram of Fig. 3-3. Now f1	is one-to-one since no element of B is the image of more than one element of A.
Similarly, f2	is one-to-one. However, neither f3 nor f4 is one-to-one since f3(r) = f3(u) and f4(v) = f4(w)
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Fig. 3-3

As far as being onto is concerned, f2and f3are both onto functions since every element of C is the image
under f2of some element of B and every element of D is the image under f3of some element of C, f2(B) = C
and f3(C)	= D. On the other hand, f1is not onto since 3 ∈ B	is not the image under f4of any element of A.
and f4is not onto since x ∈ E is not the image under f4of any element of D.
Thus f1is one-to-one but not onto, f3is onto but not one-to-one and f4is neither one-to-one nor onto.
However, f2is both one-to-one and onto, i.e., is a one-to-one correspondence between A and B. Hence f2is
invertible and f2−1 is a function from C to B.

Geometrical Characterization of One-to-One and Onto Functions
Consider now functions of the form	f	:	R	→	R. Since the graphs of such functions may be plot-
ted in the Cartesian plane	R2and since functions may be identiﬁed with their graphs, we might wonder













whether the concepts of being one-to-one and onto have some geometrical meaning. The answer is yes.
Speciﬁcally:
(1)	f :R → R is one-to-one if each horizontal line intersects the graph of f in at most one point.
(2)	f :R → R is an onto function if each horizontal line intersects the graph of f at one or more points.
Accordingly, if f is both one-to-one and onto, i.e. invertible, then each horizontal line will intersect the graph of
f at exactly one point.



EXAMPLE 3.4	Consider the following four functions from R into R:
f1(x) = x2,	f2(x) = 2x,	f3(x) = x3− 2x2− 5x + 6,	f4(x) = x3
The graphs of these functions appear in Fig. 3-4. Observe that there are horizontal lines which intersect the graph
of f1	twice and there are horizontal lines which do not intersect the graph of f1	at all; hence f1	is neither one-
to-one nor onto. Similarly, f2 is one-to-one but not onto, f3 is onto but not one-to-one and f4 is both one-to-one
and onto. The inverse of f4is the cube root function, i.e., f4−1(x)=3x.
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Fig. 3-4


Permutations
An invertible (bijective) function σ : X → X is called a permutation on X. The composition and inverses of
permutations on X and the identity function on X are also permutations on X.
Suppose X = {1, 2, . . . , n}. Then a permutation σ on X is frequently denoted by
σ =12	3	· · ·	n

j1	j2	j3	· · ·	jn
where j1=σ (i). The set of all such permutations is denoted by Sn, and there are n! = n(n − 1) · · · 3 · 2 · 1 of
them. For example,


σ =

123	4	5	6
4	6	2	5	1	3


and	τ =

123	4	5	6
6	4	3	1	2	5

are permutations in S6, and there are 6! =	720 of them. Sometimes, we only write the second line of the
permutation, that is, we denote the above permutations by writing σ = 462513 and τ	= 643125.

3.4	MATHEMATICAL FUNCTIONS, EXPONENTIAL AND LOGARITHMIC FUNCTIONS
This section presents various mathematical functions which appear often in the analysis of algorithms, and
in computer science in general, together with their notation. We also discuss the exponential and logarithmic
functions, and their relationship.






Floor and Ceiling Functions

Let x be any real number. Then x lies between two integers called the ﬂoor and the ceiling of x. Speciﬁcally,

x	, called the ﬂoor of x, denotes the greatest integer that does not exceed x.
x	, called the ceiling of x, denotes the least integer that is not less
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