Relation

The reader is familiar with many relations such as “less than,” “is parallel to,” “is a subset of,” and so on.

In a certain sense, these relations consider the existence or nonexistence of a certain connection between pairs

of objects taken in a deﬁnite order. Formally, we deﬁne a relation in terms of these “ordered pairs.”

An ordered pair of elements a and b, where a is designated as the ﬁrst element and b as the second element,

is denoted by (a, b). In particular,

(a, b) = (c, d)


if and only if a
= c and b
= d. Thus (a, b) = (b, a) unless a
= b. This contrasts with sets where the order of

elements is irrelevant; for example, {3, 5} = {5, 3}.

2.2
PRODUCT SETS
Consider two arbitrary sets A and B. The set of all ordered pairs (a, b) where a
∈
A and b
∈
B
is called

the product, or Cartesian product, of A and B. A short designation of this product is A × B , which is read

“A cross B.” By deﬁnition,

A × B = {(a, b) | a ∈ A and b ∈ B}

One frequently writes A2instead of A × A.

EXAMPLE 2.1
R denotes the set of real numbers and so R2= R × R is the set of ordered pairs of real numbers.

The reader is familiar with the geometrical representation of R2as points in the plane as in Fig. 2-1. Here each

point P represents an ordered pair (a, b) of real numbers and vice versa; the vertical line through P meets the

x-axis at a, and the horizontal line through P meets the y-axis at b. R2is frequently called the Cartesian plane.

EXAMPLE 2.2
Let A = {1, 2} and B = {a, b, c}. Then

A × B = {(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)}

B × A = {(a, 1), (b, 1), (c, 1), (a, 2), (b, 2), (c, 2)}

Also, A × A = {(1, 1), (1, 2), (2, 1), (2, 2)}
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Fig. 2-1



There are two things worth noting in the above examples. First of all A × B = B × A. The Cartesian product

deals with ordered pairs, so naturally the order in which the sets are considered is important. Secondly, using

n(S) for the number of elements in a set S, we have:

n(A × B) = 6 = 2(3) = n(A)n(B)

In fact, n(A × B) = n(A)n(B) for any ﬁnite sets A and B. This follows from the observation that, for an ordered

pair (a, b) in A × B, there are n(A) possibilities for a, and for each of these there are n(B) possibilities for b.

The idea of a product of sets can be extended to any ﬁnite number of sets. For any sets A1, A2, . . . , An, the

set of all ordered n-tuples (a1, a2, . . . , an) where a1
∈ A1, a2
∈ A2, . . . , an∈ Anis called the product of the sets

A1, . . . , An
and is denoted by

n

A1×A2 × · · · × An
or




i=1


A1

Just as we write A2instead of A × A, so we write Aninstead of A × A × · · · × A, where there are n factors all

equal to A. For example, R3= R × R × R denotes the usual three-dimensional space.

2.3
RELATIONS
We begin with a deﬁnition.

Deﬁnition 2.1:
Let A and B be sets. A binary relation or, simply, relation from A to B is a subset of A × B .

Suppose R is a relation from A to B. Then R is a set of ordered pairs where each ﬁrst element comes from

A and each second element comes from B. That is, for each pair a ∈ A and b ∈ B, exactly one of the following

is true:

(i)
(a, b) ∈ R; we then say “a is R-related to b”, written aRb.

(ii)
(a, b) /∈ R; we then say “a is not R-related to b”, written aRb.

If R is a relation from a set A to itself, that is, if R is a subset of A2= A × A, then we say that R is a relation on A.

The domain of a relation R is the set of all ﬁrst elements of the ordered pairs which belong to R, and the

range is the set of second elements.

Although n-ary relations, which involve ordered n-tuples, are introduced in Section 2.10, the term relation

shall then mean binary relation unless otherwise stated or implied.
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EXAMPLE 2.3



(a)
A = (1, 2, 3) and B = {x, y, z}, and let R = {(1, y), (1, z), (3, y)}. Then R is a relation from A to B since R
is a subset of A × B. With respect to this relation,

1Ry, 1Rz, 3Ry,
but
1Rx, 2Rx, 2Ry, 2Rz, 3Rx, 3Rz

The domain of R is {1, 3} and the range is {y, z}.

(b) Set inclusion ⊆ is a relation on any collection of sets. For, given any pair of set A and B, either A ⊆ B

or A ⊆ B.

(c) A familiar relation on the set Z of integers is “m divides n.” A common notation for this relation is to write

m | n when m divides n. Thus 6 | 30 but 7 | 25.

(d) Consider the set L of lines in the plane. Perpendicularity, written “⊥,” is a relation on L. That is, given any

pair of lines a and b, either a ⊥ b or a ⊥ b. Similarly, “is parallel to,” written “||,” is a relation on L since

either a
b or a
b.

(e) Let A be any set. An important relation on A is that of equality,

{(a, a) | a ∈ A}

which is usually denoted by “=.” This relation is also called the identity or diagonal relation on A and it will

also be denoted byAor simply
.

(f) Let A be any set. Then A × A and ∅ are subsets of A × A and hence are relations on A called the universal
relation and empty relation, respectively.

Inverse Relation
Let R be any relation from a set A to a set B. The inverse of R, denoted by R−1, is the relation from B to A
which consists of those ordered pairs which, when reversed, belong to R; that is,

R−1
= {(b, a) | (a, b) ∈ R}

For example, let A = {1, 2, 3} and B = {x, y, z}. Then the inverse of

R = {(1, y), (1, z), (3, y)}
is
R−1 = {(y, 1), (z, 1), (y, 3)}

Clearly, if R is any relation, then (R−1)−1=R. Also, the domain and range of R−1 are equal, respectively, to

the range and domain of R. Moreover, if R is a relation on A, then R−1 is also a relation on A.

2.4
PICTORIAL REPRESENTATIVES OF RELATIONS
There are various ways of picturing relations.

Relations on R
Let S be a relation on the set R of real numbers; that is, S is a subset of R2= R × R. Frequently, S consists

of all ordered pairs of real numbers which satisfy some given equation E(x, y) = 0 (such as x2+ y2= 25).

Since R2can be represented by the set of points in the plane, we can picture S by emphasizing those points

in the plane which belong to S. The pictorial representation of the relation is sometimes called the graph of the

relation. For example, the graph of the relation x2+ y2= 25 is a circle having its center at the origin and radius 5.

See Fig. 2-2(a).


Directed Graphs of Relations on Sets



Fig. 2-2



There is an important way of picturing a relation R on a ﬁnite set. First we write down the elements of the

set, and then we draw an arrow from each element x to each element y whenever x is related to y. This diagram

is called the directed graph of the relation. Figure 2-2(b), for example, shows the directed graph of the following

relation R on the set A = {1, 2, 3, 4}:

R = {(1, 2), (2, 2), (2, 4), (3, 2), (3, 4), (4, 1), (4, 3)}

Observe that there is an arrow from 2 to itself, since 2 is related to 2 under R.

These directed graphs will be studied in detail as a separate subject in Chapter 8. We mention it here mainly

for completeness.

Pictures of Relations on Finite Sets
Suppose A and B are ﬁnite sets. There are two ways of picturing a relation R from A to B.

(i) Form a rectangular array (matrix) whose rows are labeled by the elements of A and whose columns are

labeled by the elements of B. Put a 1 or 0 in each position of the array according as a
∈ A is or is not

related to b ∈ B. This array is called the matrix of the relation.

(ii) Write down the elements of A and the elements of B in two disjoint disks, and then draw an arrow from

a ∈ A to b ∈ B whenever a is related to b. This picture will be called the arrow diagram of the relation.

Figure 2-3 pictures the relation R in Example 2.3(a) by the above two ways.


Fig. 2-3

2.5
COMPOSITION OF RELATIONS






Let A, B and C be sets, and let R be a relation from A to B and let S be a relation from B to C. That is, R is

a subset of A × B and S is a subset of B × C. Then R and S give rise to a relation from A to C denoted by R◦S

and deﬁned by:

a(R◦S)c if for some b ∈ B we have aRb and bSc.

That is ,

R ◦ S = {(a, c) | there exists b ∈ B
for which (a, b) ∈ R and (b, c) ∈ S}

The relation R◦S is called the composition of R and S; it is sometimes denoted simply by RS.

Suppose R is a relation on a set A, that is, R is a relation from a set A to itself. Then R◦R, the composition

of R with itself, is always deﬁned. Also, R◦R is sometimes denoted by R2. Similarly, R3= R2◦R = R◦R◦R ,

and so on. Thus Rnis deﬁned for all positive n.

Warning: Many texts denote the composition of relations R and S by S◦R rather than R◦S. This is done in order

to conform with the usual use of g◦f
to denote the composition of f and g where f and g are functions. Thus the

reader may have to adjust this notation when using this text as a supplement with another text. However, when a

relation R is composed with itself, then the meaning of R◦R is unambiguous.

EXAMPLE 2.4
Let A = {1, 2, 3, 4}, B = {a, b, c, d}, C = {x, y, z} and let

R = {(1, a), (2, d), (3, a), (3, b), (3, d)}
and
S = {(b, x), (b, z), (c, y), (d, z)}

Consider the arrow diagrams of R and S as in Fig. 2-4. Observe that there is an arrow from 2 to d which is followed

by an arrow from d to z. We can view these two arrows as a “path” which “connects” the element 2 ∈ A to the

element z ∈ C. Thus:

2(R ◦ S)z
since 2Rd and dSz

Similarly there is a path from 3 to x and a path from 3 to z. Hence

3(R◦S)x
and
3(R◦S)z

No other element of A is connected to an element of C. Accordingly,

R ◦ S = {(2, z), (3, x), (3, z)}

Our ﬁrst theorem tells us that composition of relations is associative.

Theorem 2.1:
Let A, B, C and D be sets. Suppose R is a relation from A to B, S is a relation from B to C, and

T is a relation from C to D. Then

(R ◦ S) ◦ T
= R ◦ (S ◦ T )

We prove this theorem in Problem 2.8.

Fig. 2-4
Composition of Relations and Matrices
There is another way of ﬁnding R◦S. Let MRand MSdenote respectively the matrix representations of the

relations R and S. Then

1


⎡

a
b
c
d

1
0
0
0


⎤



a


⎡

x
y
z

0
0
0


⎤
MR=


2

3

4


⎢⎢00
0
1
⎥⎥
⎣11
0
1
⎦
0
0
0
0


and
MS=


b

c

d


⎢⎢10
1
⎥⎥
⎣01
0
⎦
0
0
1

Multiplying MRand MSwe obtain the matrix




1




⎡xy
z

0
0
0




⎤
2
⎢⎢
0
0
1
⎥⎥
M = MRMS=

3
⎣10
2
⎦
4
0
0
0

The nonzero entries in this matrix tell us which elements are related by R◦S. Thus M = MRMSand MR◦S
have

the same nonzero entries.

2.6
TYPES OF RELATIONS
This section discusses a number of important types of relations deﬁned on a set A.

Reﬂexive Relations
A relation R on a set A is reﬂexive if aRa for every a
∈ A, that is, if (a, a) ∈ R for every a
∈ A. Thus R is

not reﬂexive if there exists a ∈ A such that (a, a) /∈ R.

EXAMPLE 2.5
Consider the following ﬁve relations on the set A = {1, 2, 3, 4}:

R1= {(1, 1), (1, 2), (2, 3), (1, 3), (4, 4)}

R2
= {(1, 1)(1, 2), (2, 1), (2, 2), (3, 3), (4, 4)}

R3
= {(1, 3), (2, 1)}

R4
= ∅, the empty relation

R5=A × A, the universal relation

Determine which of the relations are reﬂexive.

Since A contains the four elements 1, 2, 3, and 4, a relation R on A is reﬂexive if it contains the four pairs

(1, 1), (2, 2), (3, 3), and (4, 4). Thus only R2
and the universal relation R5=A × A are reﬂexive. Note that

R1, R3, and R4 are not reﬂexive since, for example, (2, 2) does not belong to any of them.

EXAMPLE 2.6
Consider the following ﬁve relations:

(1) Relation ≤ (less than or equal) on
