3.9	COMPLEXITY OF ALGORITHMS
The analysis of algorithms is a major task in computer science. In order to compare algorithms, we must
have some criteria to measure the efﬁciency of our algorithms. This section discusses this important topic.
Suppose M	is an algorithm, and suppose n	is the size of the input data. The time and space used by the
algorithm are the two main measures for the efﬁciency of M. The time is measured by counting the number of
“key operations;” for example:

(a) In sorting and searching, one counts the number of comparisons.
(b) In arithmetic, one counts multiplications and neglects additions.

Key operations are so deﬁned when the time for the other operations is much less than or at most proportional
to the time for the key operations. The space is measured by counting the maximum of memory needed by the
algorithm.
The complexity of an algorithm M is the function f (n) which gives the running time and/or storage space
requirement of the algorithm in terms of the size n of the input data. Frequently, the storage space required by
an algorithm is simply a multiple of the data size. Accordingly, unless otherwise stated or implied, the term
“complexity” shall refer to the running time of the algorithm.
The complexity function f (n), which we assume gives the running time of an algorithm, usually depends
not only on the size n of the input data but also on the particular data. For example, suppose we want to search
through an English short story TEXT for the ﬁrst occurrence of a given 3-letter word W. Clearly, if W is the
3-letter word “the,” then W likely occurs near the beginning of TEXT, so f (n) will be small. On the other hand,
if W is the 3-letter word “zoo,” then W may not appear in TEXT at all, so f (n) will be large.

58

FUNCTIONS AND ALGORITHMS

[CHAP. 3

The above discussion leads us to the question of ﬁnding the complexity function f (n) for certain cases. The
two cases one usually investigates in complexity theory are as follows:

(1)	Worst case: The maximum value of f (n) for any possible input.
(2)	Average case: The expected value of f (n).

The analysis of the average case assumes a certain probabilistic distribution for the input data; one possible
assumption might be that the possible permutations of a data set are equally likely. The average case also uses the
following concept in probability theory. Suppose the numbers n1, n2, . . . , nkoccur with respective probabilities
p1, p2, . . . , pk. Then the expectation or average value E is given by
E = n1p1+n2p2 + · · · + nk pk

These ideas are illustrated below.

Linear Search
Suppose a linear array DATA contains n elements, and suppose a speciﬁc ITEM of information is given. We
want either to ﬁnd the location LOC of ITEM in the array DATA, or to send some message, such as LOC = 0,
to indicate that ITEM does not appear in DATA. The linear search algorithm solves this problem by comparing
ITEM, one by one, with each element in DATA. That is, we compare ITEM with DATA[1], then DATA[2], and
so on, until we ﬁnd LOC such that ITEM = DATA[LOC].
The complexity of the search algorithm is given by the number	C	of comparisons between ITEM and
DATA[K]. We seek C(n) for the worst case and the average case.

(1)	Worst Case: Clearly the worst case occurs when ITEM is the last element in the array DATA or is not
there at all. In either situation, we have

C(n) = n
Accordingly, C(n) = n is the worst-case complexity of the linear search algorithm.

(2)	Average Case: Here we assume that ITEM does appear in DATA, and that it is equally likely to occur at any
position in the array. Accordingly, the number of comparisons can be any of the numbers 1, 2, 3, . . . , n,
and each number occurs with probability p = 1/n. Then

C(n) = 1 ·1+ 2 ·1+ · · · + n ·1
n	n	n
= (1 + 2 + · · · + n) ·1
n
=n(n+ 1)·1=n + 1

2

n

2

This agrees with our intuitive feeling that the average number of comparisons needed to ﬁnd the location
of ITEM is approximately equal to half the number of elements in the DATA list.

Remark: The complexity of the average case of an algorithm is usually much more complicated to analyze than
that of the worst case. Moreover, the probabilistic distribution that one assumes for the average case may not
actually apply to real situations. Accordingly, unless otherwise stated or implied, the complexity of an algorithm
shall mean the function which gives the running time of the worst case in terms of the input size. This is not
too strong an assumption, since the complexity of the average case for many algorithms is proportional to the
worst case.

Rate of Growth; Big O Notation

Suppose M is an algorithm, and suppose n is the size of the input data. Clearly the complexity f (n) of M
increases as n increases. It is usually the rate of increase of f (n) that we want to examine. This is usually done
by comparing f (n) with some standard function, such as
log n,	n,	n log n,	n2,	n3,	2n
The rates of growth for these standard functions are indicated in Fig. 3-7, which gives their approximate values
for certain values of n. Observe that the functions are listed in the order of their rates of growth: the logarithmic
function log2n grows most slowly, the exponential function 2ngrows most rapidly, and the polynomial functions
ncgrow according to the exponent c.

[image:]

Fig. 3-7	Rate of growth of standard functions

The way we compare our complexity function f (n) with one of the standard functions is to use the functional
“big O” notation which we formally deﬁne below.
Deﬁnition 3.4:	Let f (x) and g(x) be arbitrary functions deﬁned on R or a subset of R. We say “f (x) is of order
g(x),” written
f (x) = O(g(x))
if there exists a real number k and a positive constant C such that, for all x > k, we have
|f (x)| ≤ C|g(x)|
In other words, f (x) = 0(g(x)) if a constant multiple of |g(x)| exceeds |f (x)| for all x greater than some
real number k.
We also write:
f (x) = h(x) + O(g(x))	when	f (x) − h(x) = O(g(x))
(The above is called the “big O” notation since f (x) = o(g(x)) has an entirely different meaning.)
Consider now a polynomial P (x) of degree m. We show in Problem 3.24 that P (x) = O(xm).
Thus, for example,
7x2− 9x + 4 = O(x2)	and	8x3− 576x2+ 832x − 248 = O(x3)

Complexity of Well-known Algorithms
Assuming f(n) and g(n) are functions deﬁned on the positive integers, then
f (n) = O(g(n))
means that f (n) is bounded by a constant multiple of g(n) for almost all n.
To indicate the convenience of this notation, we give the complexity of certain well-known searching and
sorting algorithms in computer science:

(a) Linear search: O(n)
(c) Bubble sort: O(n2)

(b) Binary search: O(log n)	(d) Merge-sort: O(n log n)

Excercise

FUNCTIONS
3.27.	Let W = {a, b, c, d }. Decide whether each set of ordered pairs is a function from W into W.
(a)	{(b, a),	(c, d),	(d, a),	(c, d)	(a, d)}	(c)	{(a, b),	(b, b),	(c, d),	(d, b)}
(b)	{(d, d),	(c, a),	(a, b),	(d, b)}	(d)	{(a, a),	(b, a),	(a, b),	(c, d)}
3.28.	Let V	= {1, 2, 3, 4}. For the following functions f : V	→ V	and g: V	→ V , ﬁnd:
(a) f ◦g; (b), g◦f ; (c) f ◦f :
f	= {(1, 3), (2, 1), (3, 4), (4, 3)}	and	g = {(1, 2), (2, 3), (3, 1), (4, 1)}
3.29.	Find the composition function h ◦ g ◦ f for the functions in Fig. 3-9.

CHAP. 3]

FUNCTIONS AND ALGORITHMS

67

ONE-TO-ONE, ONTO, AND INVERTIBLE FUNCTIONS
3.30.	Determine if each function is one-to-one.
(a) To each person on the earth assign the number which corresponds to his age.
(b) To each country in the world assign the latitude and longitude of its capital.
(c) To each book written by only one author assign the author.
(d) To each country in the world which has a prime minister assign its prime minister.

3.31.	Let functions f, g, h from V	= {1, 2, 3, 4} into V be deﬁned by: f (n) = 6 − n, g(n) = 3,
h = {(1, 2), (2, 3), (3, 4), (4, 1)}. Decide which functions are:
(a) one-to-one;	(b) onto;	(c) both;	(d) neither.

3.32.	Let functions f, g, h from N into N be deﬁned by f (n) = n + 2, (b) g(n) = 2n;
h(n) = number of positive divisors of n. Decide which functions are:
(a) one-to-one;	(b) onto;	(c) both;	(d) neither;	(e) Find h (2) = {x|h(x) = 2}.

PROPERTIES OF FUNCTIONS

3.36.	Prove: Suppose f: A → B and g: B → A satisfy g◦f	= 1A. Then f is one-to-one and g is onto.
3.37.	Prove Theorem 3.1: A function f : A → B is invertible if and only if f is both one-to-one and onto.
3.38.	Prove: Suppose f: A → B is invertible with inverse function f −1:B → A. Then f −1◦f	= 1Aand f ◦f −1=1B.
3.39.	Suppose f : A → B is one-to-one and g : A → B is onto. Let x be a subset of A.
(a) Show f 1x, the restriction of f	to x, is one-to-one.
(b) Show g1x, need not be onto.

3.40.	For each n ∈ N, consider the open interval An= (0, 1/n) = {x | 0 < x < 1/n}. Find:
(a)	A2∪ A8;	(c) ∪(Ai| i ∈ J);	(e) ∪(Ai| i ∈ K);
(b)	A3 ∩ A7;	(d) ∩(Ai| i ∈ J);	(f) ∩(Ai| i ∈ K).
where J is a ﬁnite subset of N and K is an inﬁnite subset of N.

CARDINAL NUMBERS

3.43.	Find the cardinal number of each set: (a) {x | x is a letter in “BASEBALL”};
(b) Power set of A = {a, b, c, d, e}; (c) {x | x2= 9, 2x = 8}.

3.44.	Find the cardinal number of:
(a) all functions from A = {a, b, c, d} into B = {1, 2, 3, 4, 5};
(b) all functions from P into Q where |P | = r and |Q| = s;
(c) all relations on A = {a, b, c, d};
(d) all relations on P where |P | = r.

3.46.	Prove: (a) |A × B | = |B × A|; (b) If A ⊆ B then |A| ≤ |B|; (c) If |A| = |B| then P (A)| = |P (B)|.

SPECIAL FUNCTIONS
3.47.	Find: (a)	13.2	, −0.17	,	34; (b) 13.2 , −0.17	,	34	.

3.48.	Find:
(a) 29 (mod 6);	(c) 5 (mod 12);	(e) −555 (mod 11).
(b) 200 (mod 20);	(d) −347 (mod 6);

3.49.	Find: (a) 3! + 4!; (b) 3!(3! + 2!); (c) 6!/5!; (d) 30!/28!.

MISCELLANEOUS PROBLEMS
3.51.	Let n be an integer. Find L(25) and describe what the function L does where L is deﬁned by:

L(n) =

0ifn = 1
L (n/2) + 1	if n > 1

3.52.	Let a and b be integers. Find Q(2, 7), Q(5, 3), and Q(15, 2), where Q(a, b) is deﬁned by:

Q(a, b) =5

if a < b

Q(a − b, b + 2) + a	if a ≥ b
3.53.	Prove: The set P of all polynomials p(x) = a0+a1x +· · ·+axm with integral coefﬁcients (that is, where a0, a1, . . . , am
are integers) is denumerable.

3.29.	{(
3.31.	(a

image1.jpeg

