Floor and Ceiling Functions







Let x be any real number. Then x lies between two integers called the ﬂoor and the ceiling of x. Speciﬁcally,

x	, called the ﬂoor of x, denotes the greatest integer that does not exceed x.
x	, called the ceiling of x, denotes the least integer that is not less than x.

If x is itself an integer, then	x = x	; otherwise	x + 1 = x	. For example,
√

3.14 = 3,

3.14 = 4,

5	= 2,	 −8.5 = −9,	7 = 7,	 −4 = −4,
√
5	= 3,	 −8.5 = −8,	7 = 7,	 −4 = −4



Integer and Absolute Value Functions
Let x be any real number. The integer value of x, written INT(x), converts x into an integer by deleting
(truncating) the fractional part of the number. Thus
√

INT(3.14) = 3,	INT(

5) = 2,	INT(−8.5) = −8,	INT(7) = 7

Observe that INT(x) = x	or INT(x) = x	according to whether x is positive or negative.
The absolute value of the real number x, written ABS(x) or |x|, is deﬁned as the greater of x or −x . Hence
ABS(0) = 0, and, for x	= 0, ABS(x) = x or ABS(x) = −x , depending on whether x is positive or negative.
Thus
| − 15| = 15,	|7| = 7,	| − 3.33| = 3.33,	|4.44| = 4.44,	| − 0.075| = 0.075
We note that |x| = | − x | and, for x = 0, |x| is positive.

Remainder Function and Modular Arithmetic
Let k be any integer and let M be a positive integer. Then

k (mod M)

(read: k modulo M) will denote the integer remainder when k is divided by M. More exactly, k (mod M) is the
unique integer r such that
k = Mq + r	where	0 ≤ r < M
When k is positive, simply divide k by M to obtain the remainder r. Thus
25 (mod 7) = 4,	25 (mod 5) = 0,	35 (mod 11) = 2,	3 (mod 8) = 3
If k is negative, divide |k| by M to obtain a remainder r ; then k (mod M) = M − r	when r	= 0. Thus
−26 (mod 7) = 7 − 5 = 2,	−371 (mod 8) = 8 − 3 = 5,	−39 (mod 3) = 0

The term “mod” is also used for the mathematical congruence relation, which is denoted and deﬁned as
follows:
a ≡ b (mod M)	if any only if	M divides b − a
M is called the modulus, and a ≡ b (mod M) is read “a is congruent to b modulo M”. The following aspects of
the congruence relation are frequently useful:
0 ≡ M (mod M)	and	a ± M ≡ a (mod M)












Arithmetic modulo M refers to the arithmetic operations of addition, multiplication, and subtraction where
the arithmetic value is replaced by its equivalent value in the set
{0, 1, 2, . . . , M − 1}	or in the set	{1, 2, 3, . . . , M}

For example, in arithmetic modulo 12, sometimes called “clock” arithmetic,
6 + 9 ≡ 3,	7 × 5 ≡ 11,	1 − 5 ≡ 8,	2 + 10 ≡ 0 ≡ 12

(The use of 0 or M depends on the application.)

Exponential Functions
Recall the following deﬁnitions for integer exponents (where m is a positive integer):
1
am= a · a · · · a(m times),	a0= 1,	a−m=

am
Exponents are extended to include all rational numbers by deﬁning, for any rational number m/n,

√

√



For example,

am/n=nam	= (na)m


1
24= 16,	2−4==1,	1252/3=52= 25

24

16

In fact, exponents are extended to include all real numbers by deﬁning, for any real number x,
ax= lim	ar,	where r is a rational number

r→x
Accordingly, the exponential function f (x) = axis deﬁned for all real numbers.

Logarithmic Functions
Logarithms are related to exponents as follows. Let b be a positive number. The logarithm of any positive
number x to be the base b, written
logbx
represents the exponent to which b must be raised to obtain x. That is,
y = logbx	and	by= x

are equivalent statements. Accordingly,

log28 = 3	since	23= 8;	log10100 = 2

since	102= 100

log264 = 6	since	26= 64;	log100.001 = −3	since	10−3	= 0.001
Furthermore, for any base b, we have b0= 1 and b1= b; hence
logb1 = 0	and	logbb = 1

The logarithm of a negative number and the logarithm of 0 are not deﬁned.
Frequently, logarithms are expressed using approximate values. For example, using tables or calculators, one
obtains
log10300 = 2.4771	and	loge40 = 3.6889
as approximate answers. (Here e = 2.718281....)


[image: ]



Three classes of logarithms are of special importance: logarithms to base 10, called common logarithms;
logarithms to base e, called natural logarithms; and logarithms to base 2, called binary logarithms. Some texts
write

ln x for logex	and

lg x or log x for log2x

The term log x, by itself, usually means log10x; but it is also used for logex in advanced mathematical texts and
for log2x in computer science texts.
Frequently, we will require only the ﬂoor or the ceiling of a binary logarithm. This can be obtained by looking
at the powers of 2. For example,
log2100	= 6	since	26= 64	and	27= 128
log21000	= 9	since	28= 512	and	29= 1024
and so on.

Relationship between the Exponential and Logarithmic Functions
The basic relationship between the exponential and the logarithmic functions
f (x) = bxand	g(x) = logbx
is that they are inverses of each other; hence the graphs of these functions are related geometrically. This relation-
ship is illustrated in Fig. 3-5 where the graphs of the exponential function f (x) = 2x, the logarithmic function
g(x)	=	log2x, and the linear function h(x)	=	x	appear on the same coordinate axis. Since	f (x)	=	2xand
g(x) = log2x are inverse functions, they are symmetric with respect to the linear function h(x) = x	or, in other
words, the line y = x.
















Fig. 3-5

Figure 3-5 also indicates another important property of the exponential and logarithmic functions. Speciﬁcally,
for any positive c, we have
g(c) < h(c) < f (c),	that is,	g(c) < c < f (c)
In fact, as c increases in value, the vertical distances h(c) − g(c) and f (c) − g(c) increase in value. Moreover,
the logarithmic function g(x) grows very slowly compared with the linear function h(x), and the exponential
function f (x) grows very quickly compared with h(x).

3.5	SEQUENCES, INDEXED CLASSES OF SETS
Sequences and indexed classes of sets are special types of functions with their own notation. We discuss
these objects in this section. We also discuss the summation notation here.






Sequences


A sequence is a function from the set N = {1, 2, 3, . . .} of positive integers into a set A. The notation anis
used to denote the image of the integer n. Thus a sequence is usually denoted by
a1, a2, a3, . . .	or	{an: n ∈ N}	or	simply	{an}
Sometimes the domain of a sequence is the set {0, 1, 2, . . .} of nonnegative integers rather than N. In such a ease
we say n begins with 0 rather than 1.
A ﬁnite sequence over a set A is a function from {1, 2, . . . , m} into A, and it is usually denoted by
a1, a2, . . . , am
Such a ﬁnite sequence is sometimes called a list or an m-tuple.



EXAMPLE 3.5
(a) The following are two familiar sequences:

(i) 1,1

1	1

2,3,4 , . . . which may be deﬁned by an=n1;
−

(ii) 1,1

1	1

2,4,8 , . . . which may be deﬁned by bn=2n
Note that the ﬁrst sequence begins with n = 1 and the second sequence begins with n = 0.
(b) The important sequence 1, −1, 1, −1, . . . may be formally deﬁned by
an= (−1)n+1or, equivalently, by	bn= (−1)n
where the ﬁrst sequence begins with n = 1 and the second sequence begins with n = 0.
(c)	Strings	Suppose a set A is ﬁnite and A is viewed as a character set or an alphabet. Then a ﬁnite sequence
over A is called a string or word, and it is usually written in the form a1a2 . . . am, that is, without parentheses.
The number m of characters in the string is called its length. One also views the set with zero characters as a
string; it is called the empty string or null string. Strings over an alphabet A and certain operations on these
strings will be discussed in detail in Chapter 13.

Summation Symbol, Sums
Here we introduce the summation symbol	(the Greek letter sigma). Consider a sequence a1, a2, a3, . . ..
Then we deﬁne the following:

n

J=1


aj= a1+a2 + · · · + anand

n

j=m


aj= am+ am+1 + · · · + an

The letter j in the above expressions is called a dummy index or dummy variable. Other letters frequently used as
dummy variables are i, k, s, and t.


EXAMPLE 3.6
n
ai bi=a1b1+a2b2 + · · · + anbn
i=1
5
j2= 22+ 32+ 42+ 52= 4 + 9 + 16 + 25 = 54
j=2
n
j	= 1 + 2 + · · · + n
j=1
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The last sum appears very often. It has the value n(n + 1)/2. That is:
n(n + 1)
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[CHAP. 3

1 + 2 + 3 + · · · + n =

Indexed Classes of Sets

2

,	for example,	1 + 2 + · · · + 50 =

2

= 1275

Let I be any nonempty set, and let S be a collection of sets. An indexing function from I to S is a function
f : I → S. For any i ∈ I , we denote the image f (i) by Ai. Thus the indexing function f is usually denoted by
{Ai| i ∈ I }	or	{Ai}i∈I	or simply	{Ai}
The set I is called the indexing set, and the elements of I are called indices. If f is one-to-one and onto, we say
that S is indexed by I.
The concepts of union and intersection are deﬁned for indexed classes of sets as follows:
∪i ∈IAi	= {x | x ∈ Ai	for some i ∈ I }	and	∩i∈I	Ai	= {x | x ∈ Ai	for all i ∈ I }
In the case that I is a ﬁnite set, this is just the same as our previous deﬁnition of union and intersection.
If I is N, we may denote the union and intersection, respectively, as follows:
A1∪ A2∪ A3∪ . . .	and	A1∩ A2∩ A3∩ . . .


EXAMPLE 3.7	Let I be the set Z of integers. To each n ∈ Z, we assign the following inﬁnite interval in R:
An= {x | x ≤ n} = (−∞, n]
For any real number a, there exists integers n1 and n2	such that n1	< a < n2; so a ∈ An2buta /∈ An1 . Hence
a ∈ ∪nAn	but	a /∈ ∩nAn
Accordingly,
∪nAn=R	but	∩n An	= ∅
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