Fundamental Products
Consider n distinct sets A1, A2, …, An. A fundamental product of the sets is a set of the form
A∗1∩ A∗2∩ . . . ∩ A∗nwhere	A∗i= A	or	A∗i= AC
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We note that:







(i) There are m = 2nsuch fundamental products.
(ii) Any two such fundamental products are disjoint.
(iii) The universal set U is the union of all fundamental products.

Thus U is the disjoint union of the fundamental products (Problem 1.60). There is a geometrical description
of these sets which is illustrated below.


EXAMPLE 1.6	Figure 1-5(a) is the Venn diagram of three sets A, B, C. The following lists the m = 23= 8
fundamental products of the sets A, B, C:
P1=A ∩ B ∩ C,	P3=A ∩ BC∩ C,	P5=AC∩ B ∩ C,	P7=AC∩ BC∩ C,
P2=A ∩ B ∩ CC,	P4=A ∩ BC∩ CC,	P6=AC∩ B ∩ CC,P8=AC∩ BC∩ CC.

The eight products correspond precisely to the eight disjoint regions in the Venn diagram of sets	A, B , C	as
indicated by the labeling of the regions in Fig. 1-5(b).














Fig. 1-5


1.5	ALGEBRA OF SETS, DUALITY
Sets under the operations of union, intersection, and complement satisfy various laws (identities) which are
listed in Table 1-1. In fact, we formally state this as:
Theorem 1.5:	Sets satisfy the laws in Table 1-1.


Table 1-1	Laws of the algebra of sets

Idempotent laws:
Associative laws:

(1a) A ∪ A = A
(2a) (A ∪ B) ∪ C = A ∪ (B ∪ C)

(1b) A ∩ A = A
(2b) (A ∩ B) ∩ C = A ∩ (B ∩ C)

Commutative laws:	(3a) A ∪ B = B ∪ A

(3b) A ∩ B = B ∩ A

Distributive laws:
Identity laws:

Involution laws:

Complement laws:

(4a) A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)	(4b) A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)
(5a) A ∪ ∅ = A	(5b) A ∩ U = A
(6a) A ∪ U = U	(6b) A ∩ ∅ = ∅
(7) (AC)C= A
(8a) A ∪ AC= U	(8b) A ∩ AC= ∅
(9a) UC= ∅	(9b) ∅C	= U

DeMorgan’s laws:	(10a) (A ∪ B)C= AC∩ BC

(10b) (A ∩ B)C= AC∪ BC












Remark: Each law in Table 1-1 follows from an equivalent logical law. Consider, for example, the proof of
DeMorgan’s Law 10(a):
(A ∪ B)C= {x | x /∈ (A or B)} = {x | x /∈ A and x /∈ B} = AC∩ BC
Here we use the equivalent (DeMorgan’s) logical law:
¬(p ∨ q) = ¬p ∧ ¬q
where ¬ means “not,” ∨ means “or,” and ∧ means “and.” (Sometimes Venn diagrams are used to illustrate the
laws in Table 1-1 as in Problem 1.17.)

Duality
The identities in Table 1-1 are arranged in pairs, as, for example, (2a) and (2b). We now consider the principle
behind this arrangement. Suppose E is an equation of set algebra. The dual E∗ofE is the equation obtained by
replacing each occurrence of ∪, ∩, U and ∅ in E by ∩, ∪, ∅, and U, respectively. For example, the dual of
(U ∩ A) ∪ (B ∩ A) = A	is	(∅ ∪ A) ∩ (B ∪ A) = A
Observe that the pairs of laws in Table 1-1 are duals of each other. It is a fact of set algebra, called the principle
of duality, that if any equation E is an identity then its dual E∗ is also an identity.

1.6	FINITE SETS, COUNTING PRINCIPLE
Sets can be ﬁnite or inﬁnite. A set S is said to be ﬁnite if S is empty or if S contains exactly m elements where
m is a positive integer; otherwise S is inﬁnite.

EXAMPLE 1.7
(a) The set A of the letters of the English alphabet and the set D of the days of the week are ﬁnite sets. Speciﬁcally,
A has 26 elements and D has 7 elements.
(b) Let E be the set of even positive integers, and let I be the unit interval, that is,
E = {2, 4, 6, . . .}	and	I = [0, 1] = {x | 0 ≤ x ≤ 1}
Then both E and I are inﬁnite.
A set S is countable if	S is ﬁnite or if the elements of	S can be arranged as a sequence, in which case S is
said to be countably inﬁnite; otherwise S is said to be uncountable. The above set E of even integers is countably
inﬁnite, whereas one can prove that the unit interval I = [0, 1] is uncountable.

Counting Elements in Finite Sets
The notation n(S) or	|S| will denote the number of elements in a set S. (Some texts use #(S) or card(S)
instead of n(S).) Thus n(A) = 26, where A is the letters in the English alphabet, and n(D) = 7, where D is the
days of the week. Also n(∅) = 0 since the empty set has no elements.
The following lemma applies.
Lemma 1.6:	Suppose A and B are ﬁnite disjoint sets. Then A ∪ B is ﬁnite and
n(A ∪ B) = n(A) + n(B)
This lemma may be restated as follows:
Lemma 1.6:	Suppose S is the disjoint union of ﬁnite sets A and B . Then S is ﬁnite and
n(S) = n(A) + n(B)












Proof. In counting the elements of A ∪ B, ﬁrst count those that are in A. There are n(A) of these. The only other
elements of A ∪ B are those that are in B but not in A. But since A and B are disjoint, no element of B is in A,
so there are n(B) elements that are in B but not in A. Therefore, n(A ∪ B) = n(A) + n(B).
For any sets A and B, the set A is the disjoint union of A\B and A ∩ B. Thus Lemma 1.6 gives us the
following useful result.
Corollary 1.7:	Let A and B be ﬁnite sets. Then
n(A\B) = n(A) − n(A ∩ B)
For example, suppose an art class A has 25 students and 10 of them are taking a biology class B. Then the number
of students in class A which are not in class B is:
n(A\B) = n(A) − n(A ∩ B) = 25 − 10 = 15
Given any set A, recall that the universal set U is the disjoint union of A and AC. Accordingly, Lemma 1.6
also gives the following result.
Corollary 1.8:	Let A be a subset of a ﬁnite universal set U. Then
n(AC) = n(U) − n(A)
For example, suppose a class U with 30 students has 18 full-time students. Then there are 30 −18 = 12 part-time
students in the class U.

Inclusion–Exclusion Principle
There is a formula for n(A ∪ B) even when they are not disjoint, called the Inclusion–Exclusion Principle.
Namely:
Theorem (Inclusion–Exclusion Principle) 1.9:	Suppose A and B are ﬁnite sets. Then A ∪ B and A ∩ B are
ﬁnite and
n(A ∪ B) = n(A) + n(B) − n(A ∩ B)
That is, we ﬁnd the number of elements in A or B (or both) by ﬁrst adding n(A) and n(B) (inclusion) and then
subtracting n(A ∩ B) (exclusion) since its elements were counted twice.
We can apply this result to obtain a similar formula for three sets:
Corollary 1.10:	Suppose A, B, C are ﬁnite sets. Then A ∪ B ∪ C is ﬁnite and
n(A ∪ B ∪ C) = n(A) + n(B) + n(C) − n(A ∩ B) − n(A ∩ C) − n(B ∩ C) + n(A ∩ B ∩ C)
Mathematical induction (Section 1.8) may be used to further generalize this result to any number of ﬁnite sets.



EXAMPLE 1.8	Suppose a list A contains the 30 students in a mathematics class, and a list B	contains the
35 students in an English class, and suppose there are 20 names on both lists. Find the number of students:
(a) only on list A, (b) only on list B, (c) on list A or B (or both), (d) on exactly one list.
(a) List A has 30 names and 20 are on list B; hence 30 − 20 = 10 names are only on list A.
(b) Similarly, 35 − 20 = 15 are only on list B.
(c) We seek n(A ∪ B). By inclusion–exclusion,
n(A ∪ B) = n(A) + n(B) − n(A ∩ B) = 30 + 35 − 20 = 45.
In other words, we combine the two lists and then cross out the 20 names which appear twice.
(d) By (a) and (b), 10 + 15 = 25 names are only on one list; that is, n(A ⊕ B) = 25.













1.7	CLASSES OF SETS, POWER SETS, PARTITIONS
Given a set S, we might wish to talk about some of its subsets. Thus we would be considering a set of sets.
Whenever such a situation occurs, to avoid confusion, we will speak of a class of sets or collection of sets rather
than a set of sets. If we wish to consider some of the sets in a given class of sets, then we speak of subclass or
subcollection.


EXAMPLE 1.9	Suppose S = {1, 2, 3, 4}.
(a) Let A be the class of subsets of S which contain exactly three elements of S. Then

A = [{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}]

That is, the elements of A are the sets {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, and {2, 3, 4}.

(b) Let B be the class of subsets of S, each which contains 2 and two other elements of S. Then

B = [{1, 2, 3}, {1, 2, 4}, {2, 3, 4}]

The elements of B	are the sets {1, 2, 3}, {1, 2, 4}, and {2, 3, 4}. Thus B	is a subclass of A, since every
element of B is also an element of A. (To avoid confusion, we will sometimes enclose the sets of a class in
brackets instead of braces.)


Power Sets
For a given set S , we may speak of the class of all subsets of S. This class is called the power set of S , and
will be denoted by P (S). If S is ﬁnite, then so is P (S). In fact, the number of elements in P (S) is 2 raised to the
power n(S). That is,
n(P (S)) = 2n(S)
(For this reason, the power set of S is sometimes denoted by 2S.)


EXAMPLE 1.10	Suppose S = {1, 2, 3}. Then

P (S) = [∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, S]

Note that the empty set ∅ belongs to P (S) since ∅ is a subset of S. Similarly, S belongs to P (S). As expected
from the above remark, P (S) has 23= 8 elements.

Partitions
Let S	be a nonempty set. A partition	of	S	is a subdivision of S	into nonoverlapping, nonempty subsets.
Precisely, a partition of S is a collection {Ai}of nonempty subsets of S such that:

(i) Each a in S belongs to one of the Ai.
(ii) The sets of {Ai} are mutually disjoint; that is, if
Aj = Akthen	Aj∩ Ak= ∅
The subsets in a partition are called cells. Figure 1-6 is a Venn diagram of a partition of the rectangular set
S of points into ﬁve cells, A1, A2, A3, A4, A5.
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Fig. 1-6




EXAMPLE 1.11	Consider the following collections of subsets of S = {1, 2, . . ., 8, 9}:
(i) [{1, 3, 5}, {2, 6}, {4, 8, 9}]
(ii) [{1, 3, 5}, {2, 4, 6, 8}, {5, 7, 9}]
(iii) [{1, 3, 5}, {2, 4, 6, 8}, {7, 9}]
Then (i) is not a partition of S since 7 in S does not belong to any of the subsets. Furthermore, (ii) is not a
partition of S since {1, 3, 5} and {5, 7, 9} are not disjoint. On the other hand, (iii) is a partition of S.

Generalized Set Operations
The set operations of union and intersection were deﬁned above for two sets. These operations can be extended
to any number of sets, ﬁnite or inﬁnite, as follows.
Consider ﬁrst a ﬁnite number of sets, say, A1, A2, . . ., Am. The union and intersection of these sets are
denoted and deﬁned, respectively, by
A1∪ A2∪ . . . ∪ Am=	mi=1Ai	= {x | x ∈ Aifor some Ai}
A1 ∩ A2 ∩ . . . ∩ Am=mi=1Ai	= {x | x ∈ Ai	for every Ai}
That is, the union consists of those elements which belong to at least one of the sets, and the intersection consists
of those elements which belong to all the sets.
Now let A	be any collection of sets. The union and the intersection of the sets in the collection A is denoted
and deﬁned, respectively, by
(A|A ∈ A ) = {x | x ∈ Aifor some Ai∈ A }
(A|A ∈ A ) = {x | x ∈ Ai	for every Ai	∈ A }
That is, the union consists of those elements which belong to at least one of the sets in the collection A	and the
intersection consists of those elements which belong to every set in the collection A.



EXAMPLE 1.12	Consider the sets
A1	= {1, 2, 3, . . .} = N,	A2	= {2, 3, 4, . . .},	A3 = {3, 4, 5, . . .},	An	= {n, n + 1, n + 2, . . .}.
Then the union and intersection of the sets are as follows:

(Ak|k ∈ N) = N	and

(Ak| k ∈ N) = ∅

DeMorgan’s laws also hold for the above generalized operations. That is:
Theorem 1.11:	Let A	be a collection of sets. Then:
C

(i)

(ii)

(A | A ∈ A )
(A | A ∈ A )


C

=	(AC| A ∈ A )
=	(AC| A ∈ A )






1.8	MATHEMATICAL INDUCTION






An essential property of the set N = {1, 2, 3, …} of positive integers follows:

Principle of Mathematical Induction I: Let P be a proposition deﬁned on the positive integers N; that is, P (n)
is either true or false for each n ∈ N. Suppose P has the following two properties:
(i)	P (1) is true.
(ii)	P (k + 1) is true whenever P (k) is true.
Then P	is true for every positive integer n ∈ N.

We shall not prove this principle. In fact, this principle is usually given as one of the axioms when N is
developed axiomatically.


EXAMPLE 1.13	Let P	be the proposition that the sum of the ﬁrst n odd numbers is n2; that is,
P (n) : 1 + 3 + 5 + · · · + (2n − 1) = n2
(The kth odd number is 2k − 1, and the next odd number is 2k + 1.) Observe that P (n) is true for n = 1; namely,
P (1) = 12
Assuming P (k) is true, we add 2k + 1 to both sides of P (k), obtaining
1 + 3 + 5 + · · · + (2k − 1) + (2k + 1) − k2+ (2k + 1) = (k + 1)2
which is P (k + 1). In other words, P (k + 1) is true whenever P (k) is true. By the principle of mathematical
induction, P	is true for all n.
There is a form of the principle of mathematical induction which is sometimes more convenient to use.
Although it appears different, it is really equivalent to the above principle of induction.
Principle of Mathematical Induction II: Let P be a proposition deﬁned on the positive integers N such that:
(i)	P (1) is true.
(ii)	P (k) is true whenever P (j ) is true for all 1 ≤ j < k.
Then P	is true for every positive integer n ∈ N.
Remark: Sometimes one wants to prove that a proposition P is true for the set of integers
{a, a + 1, a + 2, a + 3, . . .}

where a is any integer, possibly zero. This can be done by simply replacing 1 by a in either of the above Principles
of Mathematical Induction.








	
Excercise

SETS AND SUBSETS
1.26	Which of the following sets are equal?

A = {x | x2− 4x + 3 = 0},	C = {x | x ∈ N, x < 3},

E = {1, 2},	G = {3, 1},

B = {x | x2− 3x + 2 = 0},	D = {x | x ∈ N, x is odd, x < 5},	F = {1, 2, 1},	H	= {1, 1, 3}.

1.27	List the elements of the following sets if the universal set is U = {a, b, c, …, y, z}.
Furthermore, identify which of the sets, if any, are equal.

A = {x | x is a vowel},

C = {x | x precedes f in the alphabet},

B = {x | x is a letter in the word “little”},	D = {x | x is a letter in the word “title”}.

1.28	Let	A = {1, 2, …, 8, 9},	B = {2, 4, 6, 8},	C = {1, 3, 5, 7, 9},	D = {3, 4, 5},	E = {3, 5}.
Which of the these sets can equal a set X under each of the following conditions?
(a)	X and B are disjoint.	(c)	X ⊆ A but X ⊂ C.

(b)	X ⊆ D but X ⊂ B.














































(d)	X ⊆ C but X ⊂ A.






SET OPERATIONS


1
1.30	Let A and B be any sets. Prove:
(a)	A is the disjoint union of A\B and A ∩ B .
(b)	A ∪ B is the disjoint union of A\B , A ∩ B, and B\A.

1.31	Prove the following:
(a)	A ⊆ B if and only if A ∩ BC= ∅	(c) A ⊆ B if and only if BC⊆ AC
(b)	A ⊆ B if and only if AC∪ B = U	(d) A ⊆ B if and only if A\B = ∅

(Compare the results with Theorem 1.4.)
1.32	Prove the Absorption Laws: (a) A ∪ (A ∩ B) = A;	(b) A ∩ (A ∪ B) = A.


VENN DIAGRAMS
1.34	The Venn diagram in Fig. 1-5(a) shows sets A, B , C. Shade the following sets:
(a)	A\(B ∪ C);	(b) AC∩ (B ∪ C);	(c) AC∩ (C\B).

1.35	Use the Venn diagram in Fig. 1-5(b) to write each set as the (disjoint) union of fundamental products:
(a)	A ∩ (B ∪ C);	(b) AC∩ (B ∪ C);	(c) A ∪ (B\C).
1.36	Consider the following assumptions:
S1: All dictionaries are useful.
S2: Mary owns only romance novels.
S3: No romance novel is useful.
Use a Venn diagram to determine the validity of each of the following conclusions:

(a) Romance novels are not dictionaries.
(b) Mary does not own a dictionary.
(c) All useful books are dictionaries.


ALGEBRA OF SETS AND DUALITY
1.37	Write the dual of each equation:
(a)	A = (BC∩ A) ∪ (A ∩ B)
(b)	(A ∩ B) ∪ (AC∩ B) ∪ (A ∩ BC) ∪ (AC∩ BC) = U

1.38	Use the laws in Table 1-1 to prove each set identity:
(a)	(A ∩ B) ∪ (A ∩ BC) = A
(b)	A ∪ B = (A ∩ BC) ∪ (AC∩ B) ∪ (A ∩ B)













FINITE SETS AND THE COUNTING PRINCIPLE
1.39	Determine which of the following sets are ﬁnite:


(a) Lines parallel to the x axis.


(c) Integers which are multiples of 5.

(b) Letters in the English alphabet.	(d) Animals living on the earth.
1.40	Use Theorem 1.9 to prove Corollary 1.10: Suppose A, B, C are ﬁnite sets. Then A ∪ B ∪ C is ﬁnite and
n(A ∪ B ∪ C) = n(A) + n(B) + n(C) − n(A ∩ B) − n(A ∩ C) − n(B ∩ C) + n(A ∩ B ∩ C)





CLASSES OF SETS
1.42	Find the power set P (A) of A = {1, 2, 3, 4, 5}.
1.43	Given A = [{a, b}, {c}, {d, e, f }].

(a) List the elements of A.	(b) Find n(A).	(c) Find the power set of A.

1.44	Suppose A is ﬁnite and n(A) = m. Prove the power set P (A) has 2melements.


PARTITIONS
1.45	Let S = {1, 2, …, 8, 9}. Determine whether or not each of the following is a partition of S :


(a) [{1, 3, 6}, {2, 8}, {5, 7, 9}]


(c) [{2, 4, 5, 8}, {1, 9}, {3, 6, 7}]

(b) [{1, 5, 7}, {2, 4, 8, 9}, {3, 5, 6}]	(d) [{1, 2, 7}, {3, 5}, {4, 6, 8, 9}, {3, 5}]
1.46	Let S = {1, 2, 3, 4, 5, 6}. Determine whether or not each of the following is a partition of S :
(a)	P1= [{1, 2, 3}, {1, 4, 5, 6}]	(c)	P3= [{1, 3, 5}, {2, 4}, {6}]

(b)	P2= [{1, 2}, {3, 5, 6}]

(d)	P4= [{1, 3, 5}, {2, 4, 6, 7}

1.49	Let S = {1, 2, 3, …, 8, 9}. Find the cross partition P	of the following partitions of S :
P1= [{1, 3, 5, 7, 9}, {2, 4, 6, 8}]	and	P2= [{1, 2, 3, 4}, {5, 7}, {6, 8, 9}]



















INDUCTION
1.50	Prove: 2 + 4 + 6 + · · · + 2n = n(n + 1)
1.51	Prove: 1 + 4 + 7 + · · · + 3n − 2 =n(3n−1)



2
1.52	Prove: 12+ 22+ 32+ · · · + n2=n(n+1)(62n+1)

1

1

1

1.53	Prove:1

1·3+3·5+5·7 + · · · +(2n−1)(2n+1)=
1	1	1

n
2n+1

1.54	Prove:1

1·5+5·9+9·13	+ · · · +(4n−3)(4n+1)=

n
4n+1

1.55	Prove 7n− 2nis divisible by 5 for all n ∈ N
1.56	Prove n3− 4n + 6 is divisible by 3 for all n ∈ N
1.57	Use the identity 1 + 2 + 3 + · · · + n = n(n + 1)/2 to prove that
13+ 23+ 33+ · · · + n3= (1 + 2 + 3 + · · · + n)2



1.58	Suppose N = {1, 2, 3, …} is the universal set, and
A = {n | n ≤ 6},	B = {n | 4 ≤ n ≤ 9},	C = {1, 3, 5, 7, 9},	D = {2, 3, 5, 7, 8}.
Find: (a) A ⊕ B;	(b) B ⊕ C;	(c) A ∩ (B ⊕ D);	(d) (A ∩ B) ⊕ (A ∩ D).
1.59	Prove the following properties of the symmetric difference:
(a)	(A ⊕ B) ⊕ C = A ⊕ (B ⊕ C) (Associative Law).
(b)	A ⊕ B = B ⊕ A (Commutative Law).
(c) If A ⊕ B = A ⊕ C, then B = C (Cancellation Law).
(d)	A ∩ (B ⊕ C) = (A ∩ B) ⊕ (A ∩ C) (Distributive Law).
1.60	Consider m nonempty distinct sets A1, A2, …, Am in a universal set U. Prove:
(a) There are 2mfundamental products of the m sets.
(b) Any two fundamental products are disjoint.
(c)	U is the union of all the fundamental products.





1.3.
1.
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Fig. 1-10


















1.44	Let 
(d) 













































image1.jpeg




image2.jpeg




image3.jpeg
useful books

dictionaries

romance
novels

Mary's books

AN

»




