4.5	TAUTOLOGIES AND CONTRADICTIONS
Some propositions P (p, q, . . .) contain only T in the last column of their truth tables or, in other words, they
are true for any truth values of their variables. Such propositions are called tautologies. Analogously, a proposition
P (p, q, . . .) is called a contradiction if it contains only F in the last column of its truth table or, in other words,
if it is false for any truth values of its variables. For example, the proposition “p or not p,” that is, p ∨ ¬p, is a
tautology, and the proposition “p and not p,” that is, p ∧ ¬p, is a contradiction. This is veriﬁed by looking at their
truth tables in Fig. 4-5. (The truth tables have only two rows since each proposition has only the one variable p.)







Fig. 4-5
Note that the negation of a tautology is a contradiction since it is always false, and the negation of a
contradiction is a tautology since it is always true.
Now let P (p, q, . . .) be a tautology, and let P1(p, q, . . .), P2(p, q, . . .), . . . be any propositions. Since
P (p, q, . . .) does not depend upon the particular truth values of its variables p, q, . . ., we can substitute P1for
p, P2for q, . . . in the tautology P (p, q, . . .) and still have a tautology. In other words:
Theorem 4.1 (Principle of Substitution):	If P (p, q, . . .) is a tautology, then P (P1, P2, . . .) is a tautology for
any propositions P1, P2, . . ..

4.6	LOGICAL EQUIVALENCE
Two propositions P (p, q, . . .) and Q(p, q, . . .) are said to be logically equivalent, or simply equivalent or
equal, denoted by
P (p, q, . . .) ≡ Q(p, q, . . .)
if they have identical truth tables. Consider, for example, the truth tables of ¬(p ∧ q) and ¬p ∨ ¬q appearing in
Fig. 4-6. Observe that both truth tables are the same, that is, both propositions are false in the ﬁrst case and true
in the other three cases. Accordingly, we can write
¬(p ∧ q) ≡ ¬p ∨ ¬q
In other words, the propositions are logically equivalent.

Remark: Let p be “Roses are red” and q be “Violets are blue.” Let S be the statement:

“It is not true that roses are red and violets are blue.”
Then S can be written in the form ¬(p ∧ q). However, as noted above, ¬(p ∧ q) ≡ ¬p ∨ ¬q. Accordingly, S
has the same meaning as the statement:

“Roses are not red, or violets are not blue.”
















Fig. 4-6






4.7	ALGEBRA OF PROPOSITIONS
Propositions satisfy various laws which are listed in Table 4-1. (In this table, T and F are restricted to the
truth values “True” and “False,” respectively.) We state this result formally.
Theorem 4.2:	Propositions satisfy the laws of Table 4-1.
(Observe the similarity between this Table 4-1 and Table 1-1 on sets.)

Table 4-1	Laws of the algebra of propositions

Idempotent laws:	(1a) p ∨ p ≡ p

(1b) p ∧ p ≡ p

Associative laws:

(2a) (p ∨ q) ∨ r ≡ p ∨ (q ∨ r)

(2b) (p ∧ q) ∧ r ≡ p ∧ (q ∧ r)

Commutative laws:	(3a) p ∨ q ≡ q ∨ p

(3b) p ∧ q ≡ q ∧ p

Distributive laws:	(4a) p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)	(4b) p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)


Identity laws:

Involution law:

Complement laws:

(5a) p ∨ F	≡ p
(6a) p ∨ T	≡ T
(7) ¬¬p ≡ p
(8a) p ∨ ¬p ≡ T
(9a) ¬T	≡ F

(5b) p ∧ T	≡ p
(6b) p ∧ F	≡ F

(8b) p ∧ ¬p ≡ T
(9b) ¬F	≡ T

DeMorgan’s laws:	(10a) ¬(p ∨ q) ≡ ¬p ∧ ¬q

(10b) ¬(p ∧ q) ≡ ¬p ∨ ¬q



4.8	CONDITIONAL AND BICONDITIONAL STATEMENTS
Many statements, particularly in mathematics, are of the form “If p then q.” Such statements are called
conditional statements and are denoted by
p → q
The conditional p → q is frequently read “p implies q” or “p only if q.”
Another common statement is of the form “p if and only if q.” Such statements are called biconditional
statements and are denoted by
p ↔ q
The truth values of p → q and p ↔ q are deﬁned by the tables in Fig. 4-7(a) and (b). Observe that:
(a) The conditional p → q is false only when the ﬁrst part p is true and the second part q is false. Accordingly,
when p is false, the conditional p → q is true regardless of the truth value of q.
(b) The biconditional p ↔ q is true whenever p and q have the same truth values and false otherwise.
The truth table of ¬p ∧ q appears in Fig. 4-7(c). Note that the truth table of ¬p ∨ q and p → q are identical,
that is, they are both false only in the second case. Accordingly, p → q is logically equivalent to ¬p ∨ q; that is,
p → q ≡ ¬p ∨ q












In other words, the conditional statement “If p then q” is logically equivalent to the statement “Not p or q” which
only involves the connectives ∨ and ¬ and thus was already a part of our language. We may regard p → q as an
abbreviation for an oft-recurring statement.









Fig. 4-7



4.9	ARGUMENTS
An argument is an assertion that a given set of propositions P1, P2, . . . , Pn, called premises, yields (has a
consequence) another proposition Q, called the conclusion. Such an argument is denoted by
P1, P2, . . . , Pn$Q
The notion of a “logical argument” or “valid argument” is formalized as follows:
Deﬁnition 4.4:	An argument P1, P2, . . . , Pn$Q is said to be valid if Q is true whenever all the premises
P1, P2, . . . , Pn	are true.
An argument which is not valid is called fallacy.



EXAMPLE 4.4

(a) The following argument is valid:
p, p → q $ q	(Law of Detachment)
The proof of this rule follows from the truth table in Fig. 4-7(a). Speciﬁcally, p and p	→	q	are true
simultaneously only in Case (row) 1, and in this case q is true.
(b) The following argument is a fallacy:
p → q, q $ p
For p → q and q are both true in Case (row) 3 in the truth table in Fig. 4-7(a), but in this case p is false.
Now the propositions P1, P2, . . . , Pnare true simultaneously if and only if the proposition P1∧ P2∧ . . . Pn
is true. Thus the argument P1, P2, . . . , Pn$ Q is valid if and only if Q is true whenever P1∧ P2∧ . . . ∧ Pnis
true or, equivalently, if the proposition (P1∧ P2∧ . . . ∧ Pn) → Q is a tautology. We state this result formally.
Theorem 4.3:	The argument P1, P2, . . . , Pn$ Q is valid if and only if the proposition (P1∧ P2. . . ∧Pn) → Q
is a tautology.
We apply this theorem in the next example.



EXAMPLE 4.5	A fundamental principle of logical reasoning states:

“If p implies q and q implies r,	then p implies r”
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That is, the following argument is valid:
p → q, q → r $ p → r	(Law of Syllogism)
This fact is veriﬁed by the truth table in Fig. 4-8 which shows that the following proposition is a tautology:
[(p → q) ∧ (q → r)] → (p → r)
Equivalently, the argument is valid since the premises p → q and q → r are true simultaneously only in Cases
(rows) 1, 5, 7, and 8, and in these cases the conclusion p → r is also true. (Observe that the truth table required
23= 8 lines since there are three variables p, q, and r.)
We now apply the above theory to arguments involving speciﬁc statements. We emphasize that the validity
of an argument does not depend upon the truth values nor the content of the statements appearing in the argument,
but upon the particular form of the argument. This is illustrated in the following example.



EXAMPLE 4.6	Consider the following argument:
S1:If a man is a bachelor, he is unhappy.
S2:If a man is unhappy, he dies young.
________________________________
S : Bachelors die young
Here the statement S below the line denotes the conclusion of the argument, and the statements S1and S2above
the line denote the premises. We claim that the argument S1, S2$ S is valid. For the argument is of the form
p → q, q → r $ p → r
where p is “He is a bachelor,” q is “He is unhappy” and r is “He dies young;” and by Example 4.5 this argument
(Law of Syllogism) is valid.
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