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(a) Determine which of the relations in Example 2.5 are transitive.
The relation R3is not transitive since (2, 1), (1, 3) ∈	R3but (2, 3) /∈	R3. All the other relations are transitive.
(b) Determine which of the relations in Example 2.6 are transitive.
The relations ≤, ⊆, and | are transitive, but certainly not ⊥. Also, since no line is parallel to itself, we can
have a	b and b	a, but a	a. Thus	is not transitive. (We note that the relation “is parallel or equal to” is
a transitive relation on the set L of lines in the plane.)

The property of transitivity can also be expressed in terms of the composition of relations. For a relation R on A
we did deﬁne R2= R◦R and, more generally, Rn= Rn−1◦R. Then we have the following result:
Theorem 2.2:	A relation R is transitive if and only if, for every n ≥ 1, we have Rn⊆ R.

2.7	CLOSURE PROPERTIES
Consider a given set A and the collection of all relations on A. Let P be a property of such relations, such as
being symmetric or being transitive. A relation with property P will be called a P-relation. The P-closure of an
arbitrary relation R on A, written P (R), is a P-relation such that
R ⊆ P (R) ⊆ S
for every P-relation S containing R. We will write

reﬂexive(R),	symmetric(R),	and	transitive(R)

for the reﬂexive, symmetric, and transitive closures of R.
Generally speaking, P (R) need not exist. However, there is a general situation where P (R) will always
exist. Suppose P is a property such that there is at least one P-relation containing R and that the intersection of
any P-relations is again a P-relation. Then one can prove (Problem 2.16) that
P (R) = ∩(S | S is a P -relation and R ⊆ S)
Thus one can obtain P (R) from the “top-down,” that is, as the intersection of relations. However, one usually
wants to ﬁnd P (R) from the “bottom-up,” that is, by adjoining elements to R to obtain P (R). This we do below.

Reﬂexive and Symmetric Closures
The next theorem tells us how to obtain easily the reﬂexive and symmetric closures of a relation. Here
A	= {(a, a) | a ∈ A} is the diagonal or equality relation on A.
Theorem 2.3:	Let R be a relation on a set A. Then:
(i)	R ∪	A	is the reﬂexive closure of R.
(ii)	R ∪ R−1 is the symmetric closure of R.
In other words, reﬂexive(R) is obtained by simply adding to R those elements (a, a) in the diagonal which do not
already belong to R, and symmetric(R) is obtained by adding to R all pairs (b, a) whenever (a, b) belongs to R.



EXAMPLE 2.10	Consider the relation R = {(1, 1), (1, 3), (2, 4), (3, 1), (3, 3), (4, 3)} on the set A = {1, 2, 3, 4}.
Then

reﬂexive(R) = R ∪ {(2, 2), (4, 4)}	and	symmetric(R) = R ∪ {(4, 2), (3, 4)}





Transitive Closure




Let R be a relation on a set A. Recall that R2= R◦R and Rn= Rn−1◦R. We deﬁne
∞




The following theorem applies:
Theorem 2.4:	R∗ is the transitive closure of R.

R∗	=


i=1

Ri

Suppose A is a ﬁnite set with n elements. We show in Chapter 8 on graphs that
R∗	= R ∪ R2∪ . . . ∪ Rn

This gives us the following theorem:
Theorem 2.5:	Let R be a relation on a set A with n elements. Then

transitive (R) = R ∪ R2∪ . . . ∪ Rn


EXAMPLE 2.11	Consider the relation R = {(1, 2), (2, 3), (3, 3)} on A = {1, 2, 3}. Then:
R2= R ◦R = {(1, 3), (2, 3), (3, 3)}	and	R3= R2◦R = {(1, 3), (2, 3), (3, 3)}

Accordingly,
transitive (R) = {(1, 2), (2, 3), (3, 3), (1, 3)}


2.8	EQUIVALENCE RELATIONS
Consider a nonempty set S. A relation R on S is an equivalence relation if R is reﬂexive, symmetric, and
transitive. That is, R is an equivalence relation on S if it has the following three properties:

(1) For every a ∈ S, aRa.	(2) If aRb, then bRa.	(3) If aRb and bRc, then aRc.

The general idea behind an equivalence relation is that it is a classiﬁcation of objects which are in some way
“alike.” In fact, the relation “=” of equality on any set S is an equivalence relation; that is:

(1)	a = a for every a ∈ S.	(2) If a = b, then b = a.	(3) If a = b, b = c, then a = c.

Other equivalence relations follow.



EXAMPLE 2.12

(a) Let L be the set of lines and let T be the set of triangles in the Euclidean plane.

(i) The relation “is parallel to or identical to” is an equivalence relation on L.
(ii) The relations of congruence and similarity are equivalence relations on T.

(b) The relation	⊆ of set inclusion is not an equivalence relation. It is reﬂexive and transitive, but it is not
symmetric since A ⊆ B does not imply B ⊆ A.
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(c) Let m be a ﬁxed positive integer. Two integers a and b are said to be congruent modulo m, written
a ≡ b (mod m)
if m divides a − b. For example, for the modulus m = 4, we have
11 ≡ 3 (mod 4)	and	22 ≡ 6 (mod 4)
since 4 divides 11 − 3 = 8 and 4 divides 22 − 6 = 16. This relation of congruence modulo m is an important
equivalence relation.


Equivalence Relations and Partitions
This subsection explores the relationship between equivalence relations and partitions on a non-empty set S.
Recall ﬁrst that a partition P of S is a collection {Ai } of nonempty subsets of S with the following two properties:

(1) Each a ∈ S belongs to some Ai.
(2) If Ai= Ajthen Ai∩ Aj= ∅.

In other words, a partition P of S is a subdivision of S into disjoint nonempty sets. (See Section 1.7.)
Suppose R is an equivalence relation on a set S. For each a	∈	S, let [a] denote the set of elements of S to
which a is related under R; that is:
[a] = {x | (a, x) ∈ R }
We call [a] the equivalence class of a in S; any b ∈ [a] is called a representative of the equivalence class.
The collection of all equivalence classes of elements of S under an equivalence relation R is denoted by S/R,
that is,
S/R = {[a] | a ∈ S}
It is called the quotient set of S by R. The fundamental property of a quotient set is contained in the following
theorem.
Theorem 2.6:	Let R be an equivalence relation on a set S. Then S/R is a partition of S. Speciﬁcally:

(i) For each a in S, we have a ∈ [a].
(ii)	[a] = [b] if and only if (a, b) ∈ R.
(iii) If [a] = [b], then [a ] and [b] are disjoint.
Conversely, given a partition {Ai} of the set S, there is an equivalence relation R on S such that the sets Aiare
the equivalence classes.
This important theorem will be proved in Problem 2.17.



EXAMPLE 2.13

(a) Consider the relation R = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 3)} on S = {1, 2, 3}.
One can show that R is reﬂexive, symmetric, and transitive, that is, that R is an equivalence relation. Also:

[1] = {1, 2}, [2] = {1, 2}, [3] = {3}
Observe that [1] = [2] and that S/R = {[1], [3]} is a partition of S. One can choose either {1, 3} or {2, 3} as
a set of representatives of the equivalence classes.






(b) Let R5be the relation of congruence modulo 5 on the set Z of integers denoted by
x ≡ y (mod 5)
This means that the difference x − y is divisible by 5. Then R5 is an equivalence relation on Z. The quotient
set Z/R5	contains the following ﬁve equivalence classes:
A0 = {. . . , −10, −5, 0, 5, 10, . . .}
A1 = {. . . , −9, −4, 1, 6, 11, . . .}
A2 = {. . . , −8, −3, 2, 7, 12, . . .}
A3 = {. . . , −7, −2, 3, 8, 13, . . .}
A4 = {. . . , −6, −1, 4, 9, 14, . . .}
Any integer x, uniquely expressed in the form x	= 5q + r where 0 ≤ r < 5, is a member of the equivalence
class Ar , where r is the remainder. As expected, Z is the disjoint union of equivalence classes A1, A2, A3, A4.
Usually one chooses {0, 1, 2, 3, 4} or {−2, −1, 0, 1, 2} as a set of representatives of the equivalence classes.

2.9	PARTIAL ORDERING RELATIONS
A relation R on a set S is called a partial ordering or a partial order of S if R is reﬂexive, antisymmetric, and
transitive. A set S together with a partial ordering R is called a partially ordered set or poset. Partially ordered
sets will be studied in more detail in Chapter 14, so here we simply give some examples.



EXAMPLE 2.14
(a) The relation ⊆ of set inclusion is a partial ordering on any collection of sets since set inclusion has the three
desired properties. That is,
(1)	A ⊆ A for any set A.
(2) If A ⊆ B and B ⊆ A, then A = B .
(3) If A ⊆ B and B ⊆ C, then A ⊆ C.
(b) The relation ≤ on the set R of real numbers is reﬂexive, antisymmetric, and transitive. Thus ≤ is a partial
ordering on R.
(c) The relation “a divides b,” written a | b, is a partial ordering on the set N of positive integers. However, “a
divides b” is not a partial ordering on the set Z of integers since a | b and b | a need not imply a	= b. For
example, 3 | −3 and −3 | 3 but 3  = −3.

2.10	n-ARY RELATIONS
All the relations discussed above were binary relations. By an n-ary relation, we mean a set of ordered
n-tuples. For any set S, a subset of the product set Snis called an n-ary relation on S. In particular, a subset of
S3is called a ternary relation on S.



EXAMPLE 2.15
(a) Let L be a line in the plane. Then “betweenness” is a ternary relation R on the points of L; that is, (a, b, c) ∈ R
if b lies between a and c on L.
(b) The equation x2+ y2+ z2= 1 determines a ternary relation T on the set R of real numbers. That is, a triple
(x, y, z) belongs to T if (x, y, z) satisﬁes the equation, which means (x, y, z) is the coordinates of a point in
R3on the sphere S with radius 1 and center at the origin O = (0, 0, 0).
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