3.6
RECURSIVELY DEFINED FUNCTIONS
A function is said to be recursively deﬁned if the function deﬁnition refers to itself. In order for the deﬁnition

not to be circular, the function deﬁnition must have the following two properties:

(1) There must be certain arguments, called base values, for which the function does not refer to itself.

(2) Each time the function does refer to itself, the argument of the function must be closer to a base value.

A recursive function with these two properties is said to be well-deﬁned.

The following examples should help clarify these ideas.

Factorial Function
The product of the positive integers from 1 to n, inclusive, is called “n factorial” and is usually denoted by n!.

That is,

n! = n(n − 1)(n − 2) · · · 3 · 2 · 1

It is also convenient to deﬁne 0! = 1, so that the function is deﬁned for all nonnegative integers. Thus:

0! = 1,
1! = 1,
2! = 2 · 1 = 2,
3! = 3 · 2 · 1 = 6,
4! = 4 · 3 · 2 · 1 = 24

5! = 5 · 4 · 3 · 2 · 1 = 120,
6! = 6 · 5 · 4 · 3 · 2 · 1 = 720

And so on. Observe that

5! = 5 · 4! = 5 · 24 = 120
and
6! = 6 · 5! = 6 · 120 = 720

This is true for every positive integer n; that is,

n! = n · (n − 1)!

Accordingly, the factorial function may also be deﬁned as follows:

Deﬁnition 3.1 (Factorial Function):
(a)
If n = 0, then n! = 1.

(b)
If n > 0, then n! = n · (n − 1)!

Observe that the above deﬁnition of n! is recursive, since it refers to itself when it uses (n − 1)!. However:

(1) The value of n! is explicitly given when n = 0 (thus 0 is a base value).

(2) The value of n! for arbitrary n is deﬁned in terms of a smaller value of n which is closer to the base

value 0.

Accordingly, the deﬁnition is not circular, or, in other words, the function is well-deﬁned.

EXAMPLE 3.8
Figure 3-6 shows the nine steps to calculate 4! using the recursive deﬁnition. Speciﬁcally:

Step 1. This deﬁnes 4! in terms of 3!, so we must postpone evaluating 4! until we evaluate 3. This postponement

is indicated by indenting the next step.

Step 2. Here 3! is deﬁned in terms of 2!, so we must postpone evaluating 3! until we evaluate 2!.

Step 3. This deﬁnes 2! in terms of 1!.

Step 4. This deﬁnes 1! in terms of 0!.

Step 5. This step can explicitly evaluate 0!, since 0 is the base value of the recursive deﬁnition.

Steps 6 to 9. We backtrack, using 0! to ﬁnd 1!, using 1! to ﬁnd 2!, using 2! to ﬁnd 3!, and ﬁnally using 3! to

ﬁnd 4!. This backtracking is indicated by the “reverse” indention.

Observe that we backtrack in the reverse order of the original postponed evaluations.

Fig. 3-6
54

Level Numbers

FUNCTIONS AND ALGORITHMS

[CHAP. 3

Let P be a procedure or recursive formula which is used to evaluate f (X) where f is a recursive function

and X is the input. We associate a level number with each execution of P as follows. The original execution of P
is assigned level 1; and each time P is executed because of a recursive call, its level is one more than the level

of the execution that made the recursive call. The depth of recursion in evaluating f (X) refers to the maximum

level number of P during its execution.

Consider, for example, the evaluation of 4! Example 3.8, which uses the recursive formula n! = n(n − 1)!.

Step 1 belongs to level 1 since it is the ﬁrst execution of the formula. Thus:

Step 2 belongs to level 2;
Step 3 to level 3, . . . ;
Step 5 to level 5.

On the other hand, Step 6 belongs to level 4 since it is the result of a return from level 5. In other words, Step 6

and Step 4 belong to the same level of execution. Similarly,

Step 7 belongs to level 3;
Step 8 to level 2;
and Step 9 to level 1.

Accordingly, in evaluating 4!, the depth of the recursion is 5.

Fibonacci Sequence
The celebrated Fibonacci sequence (usually denoted by F0, F1, F2, . . .) is as follows:

0,
1,
1,
2,
3,
5,
8,
13,
21,
34,
55,
. . .

That is, F0=0 and F1=1 and each succeeding term is the sum of the two preceding terms. For example, the

next two terms of the sequence are

34 + 55 = 89
and
55 + 89 = 144

A formal deﬁnition of this function follows:

Deﬁnition 3.2 (Fibonacci Sequence):
(a)
If n = 0, or n = 1, then Fn= n.

(b)
If n > 1,
then Fn= Fn−2+Fn−1.

This is another example of a recursive deﬁnition, since the deﬁnition refers to itself when it uses Fn−2 and

Fn−1 However:

(1) The base values are 0 and 1.

(2) The value of Fn
is deﬁned in terms of smaller values of n which are closer to the base values.

Accordingly, this function is well-deﬁned.

Ackermann Function
The Ackermann function is a function with two arguments, each of which can be assigned any nonnegative

interger, that is, 0, 1, 2, This function is deﬁned as:

Deﬁnition 3.3 (Ackermann function):
(a)
If
m = 0, then A(m, n) = n + 1.

(b)
If m = 0 but n = 0,
then A(m, n) = A(m − 1,
1).

(c)
If m = 0 and n = 0,
then A(m, n) = A(m − 1, A(m, n − 1)).

Once more, we have a recursive deﬁnition, since the deﬁnition refers to itself in parts (b) and (c). Observe

that A(m, n) is explicitly given only when m = 0. The base criteria are the pairs

(0, 0),
(0, 1),
(0, 2),
(0, 3),
. . . , (0, n),
. . .

Although it is not obvious from the deﬁnition, the value of any A(m, n) may eventually be expressed in terms of

the value of the function on one or more of the base pairs.

The value of
A(1, 3) is calculated in Problem 3.21. Even this simple case requires 15 steps. Generally

speaking, the Ackermann function is too complex to evaluate on any but a trivial example. Its importance comes

from its use in mathematical logic. The function is stated here mainly to give another example of a classical

recursive function and to show that the recursion part of a deﬁnition may be complicated.

3.7
CARDINALITY
Two sets A and B are said to be equipotent, or to have the same number of elements or the same cardinality,

written A
B, if there exists a one-to-one correspondence f : A → B . A set A is ﬁnite if A is empty or if A
has the same cardinality as the set {1, 2, . . . , n} for some positive integer n. A set is inﬁnite if it is not ﬁnite.

Familiar examples of inﬁnite sets are the natural numbers N, the integers Z, the rational numbers Q, and the real

numbers R.

We now introduce the idea of “cardinal numbers”. We will consider cardinal numbers simply as symbols

assigned to sets in such a way that two sets are assigned the same symbol if and only if they have the same

cardinality. The cardinal number of a set A is commonly denoted by |A|, n(A), or card (A). We will use |A|.

The obvious symbols are used for the cardinality of ﬁnite sets. That is, 0 is assigned to the empty set ∅, and

n is assigned to the set {1, 2, . . . , n}. Thus |A| = n if and only if A has n elements. For example,

|{x, y, z}| = 3
and
|{1, 3, 5, 7, 9}| = 5

The cardinal number of the inﬁnite set N of positive integers is ℵ0
(“aleph-naught”). This symbol was

introduced by Cantor. Thus |A| = ℵ0 if and only if A has the same cardinality as N.

EXAMPLE 3.9
Let E = {2, 4, 6, . . .}, the set of even positive integers. The function f : N → E deﬁned by

f (n) = 2n is a one-to-one correspondence between the positive integers N and E. Thus E has the same cardinality

as N and so we may write

|E| = ℵ0

A set with cardinality ℵ0 is said to be denumerable or countably inﬁnite. A set which is ﬁnite or denumerable

is said to be countable. One can show that the set Q of rational numbers is countable. In fact, we have the following

theorem (proved in Problem 3.13) which we will use subsequently.

Theorem 3.2:
A countable union of countable sets is countable.

That is, if A1, A2, . . . are each countable sets, then the following union is countable:

A1 ∪ A2 ∪ A3 ∪ . . .

An important example of an inﬁnite set which is uncountable, i.e., not countable, is given by the following

theorem which is proved in Problem 3.14.

Theorem 3.3:
The set I of all real numbers between 0 and 1 is uncountable.

Inequalities and Cardinal Numbers
One also wants to compare the size of two sets. This is done by means of an inequality relation which is

deﬁned for cardinal numbers as follows. For any sets A and B, we deﬁne |A| ≤ |B|
if there exists a function

f: A → B which is one-to-one. We also write

|A| < |B|
if
|A| ≤ |B|
but
|A| = |B|

For example, |N| < |I|, where I = {x : 0 ≤ x
≤ 1}, since the function f : N → I deﬁned by f (n) = 1/n is

one-to-one, but |N| = |I| by Theorem 3.3.

Cantor’s Theorem, which follows and which we prove in Problem 3.25, tells us that the cardinal numbers

are unbounded.

Theorem 3.4 (Cantor):
For any set A, we have |A| < |Power(A)| (where Power(A) is the power set of A, i.e.,

the collection of all subsets of A).

The next theorem tells us that the inequality relation for cardinal numbers is antisymmetric.

Theorem 3.5: (Schroeder-Bernstein): Suppose A and B are sets such that

|A| ≤ |B|
and
|B| ≤ |A|

Then |A| = |B|.

We prove an equivalent formulation of this theorem in Problem 3.26.

3.8
ALGORITHMS AND FUNCTIONS
An algorithm M is a ﬁnite step-by-step list of well-deﬁned instructions for solving a particular problem, say,

to ﬁnd the output f (X) for a given function f with input X. (Here X may be a list or set of values.) Frequently,

there may be more than one way to obtain f (X), as illustrated by the following examples. The particular choice

of the algorithm M to obtain f (X) may depend on the “efﬁciency” or “complexity” of the algorithm; this question

of the complexity of an algorithm M is formally discussed in the next section.

EXAMPLE 3.10
(Polynomial Evaluation)
Suppose, for a given polynomial f (x) and value x = a, we want

to ﬁnd f (a), say,

f (x) = 2x3− 7x2+ 4x − 15
and
a = 5

This can be done in the following two ways.

(a) (Direct Method):
Here we substitute a = 5 directly in the polynomial to obtain

f (5) = 2(125) − 7(25) + 4(5) − 7 = 250 − 175 + 20 − 15 = 80

Observe that there are 3 + 2 + 1 = 6 multiplications and 3 additions. In general, evaluating a polynomial of

degree n directly would require approximately

n + (n − 1) + · · · + 1 =

n(n + 1)

2

multiplications and n additions.

(b) (Horner’s Method or Synthetic Division):
Here we rewrite the polynomial by successively factoring out

x (on the right) as follows:

f (x) = (2x2− 7x + 4)x − 15 = ((2x − 7)x + 4)x − 15

Then

f (5) = ((3)5 + 4)5 − 15 = (19)5 − 15 = 95 − 15 = 80

For those familiar with synthetic division, the above arithmetic is equivalent to the following synthetic

division:

5
2
−
7
+
4
−
15

10
+
15
+
95

2
+
3
+
19
+
80

Observe that here there are 3 multiplications and 3 additions. In general, evaluating a polynomial of degree

n by Horner’s method would require approximately

n multiplications and
n additions

Clearly Horner’s method (b) is more efﬁcient than the direct method (a).

EXAMPLE 3.11
(Greatest Common Divisor)
Let a and b be positive integers with, say, b < a; and suppose

we want to ﬁnd d
=
GCD(a, b), the greatest common divisor of a
and b. This can be done in the following

two ways.

(a) (Direct Method):
Here we ﬁnd all the divisors of a, say by testing all the numbers from 2 to a/2, and all

the divisors of b. Then we pick the largest common divisor. For example, suppose a = 258 and b = 60. The

divisors of a and b follow:

a = 258;
divisors :
1,
2,
3,
6,
86,
129,
258

b = 60;
divisors :
1,
2,
3,
4,
5,
6,
10,
12,
15,
20,
30,
60

Accordingly, d = GCD(258, 60) = 6.

(b) (Euclidean Algorithm):
Here we divide a by b to obtain a remainder r1. (Note r1
< b.) Then we divide

b by the remainder r1
to obtain a second remainder r2. (Note r2
< r1.) Next we divide r1 by r2 to obtain a

third remainder r3. (Note r3
< r2.) We continue dividing rk
by rk+1 to obtain a remainder rk+2. Since

a > b > r1> r2> r3. . .

(∗)

eventually we obtain a remainder rm=0. Then rm−1=GCD (a, b). For example, suppose a
= 258 and

b = 60. Then:

(1) Dividing a = 258 by b = 60 yields the remainder r1=18.

(2) Dividing b = 60 by r1= 18 yields the remainder r2= 6.

(3) Dividing r1=18 by r2=6 yields the remainder r3=0.

Thus r2=6 = GCD(258, 60).

The Euclidean algorithm is a very efﬁcient way to ﬁnd the greatest common divisor of two positive integers a
and b. The fact that the algorithm ends follows from (∗). The fact that the algorithm yields d
= GCD(a, b) is not

obvious; it is discussed in Section 11.6.

