The Shannon-Fano Algorithm


Shannon-Fano Algorithm

A Shannon-Fano tree is built according to a specification designed to define an effective code table. The actual algorithm is simple:

1. For a given list of symbols, develop a corresponding list of probabilities or frequency counts so that each symbol’s relative frequency of occurrence is known. 

2. Sort the lists of symbols according to frequency, with the most frequently occurring symbols at the left and the least common at the right. 

3. Divide the list into two parts, with the total frequency counts of the left half being as close to the total of the right as possible. 

4. The left half of the list is assigned the binary digit 0, and the right half is assigned the digit 1. This means that the codes for the symbols in the first half will all start with 0, and the codes in the second half will all start with 1. 

5. Recursively apply the steps 3 and 4 to each of the two halves, subdividing groups and adding bits to the codes until each symbol has become a corresponding code leaf on the tree. 

 Example
The example shows the construction of the Shannon code for a small alphabet. The five symbols which can be coded have the following frequency:

	Symbol
	A
	B
	C
	D
	E

	Count
	15
	7
	6
	6
	5


[image: image1.png]a

b @

0000®





All symbols are sorted by frequency, from left to right (shown in Figure ). Putting the dividing line between symbols B and C results in a total of 22 in the left group and a total of 17 in the right group. This minimizes the difference in totals between the two groups.

With this division, A and B will each have a code that starts with a 0 bit, and the C, D, and E codes will all start with a 1, as shown in Figure b. Subsequently, the left half of the tree gets a new division between A and B, which puts A on a leaf with code 00 and B on a leaf with code 01.

After four division procedures, a tree of codes results. In the final tree, the three symbols with the highest frequencies have all been assigned 2-bit codes, and two symbols with lower counts have 3-bit codes as shown table below:

	Symbol
	A
	B
	C
	D
	E

	Code
	00
	01
	10
	110
	111


Results in 2 bits for A, B and C and per 3 bit for D and E an average bit number of

2.28 Bits per Symbol.


Instead, Huffman coding produces the following alphabet

	Symbol
	A
	B
	C
	D
	E

	Code
	0
	100
	101
	110
	111


resulting in

2.23 Bits per Symbol.

