5.6.Mutation

After crossover, the strings are subjected to mutation. Mutation prevents the algorithm to be trapped in a local minimum. Mutation plays the role of recovering the lost genetic materials as well as for randomly disturbing genetic information. Mutation of a bit involves flipping a bit, changing 0 to 1 and vice-versa.

Flipping

Flipping of a bit involves changing 0 to 1 and 1 to 0 based on a mutation chromosome generated.

5.7 Replacement

Replacement is the last stage of any breeding cycle. Two parents are drawn from a fixed size population, they breed two children, but not all four can return to the population, so two must be replaced i.e., once off springs are produced, a method must determine which of the current members of the population, if any, should be replaced by the new solutions. The technique used to decide which individual stay in a population and which are replaced in on a par with the selection in influencing convergence . Basically, there are two kinds of methods for maintaining the population; generational updates and steady state updates.

In a steady state update, new individuals are inserted in the population as soon as they are created, as opposed to the generational update where an entire new generation is produced at each time step. The insertion of a new individual usually necessitates the replacement of another population member.

5.7.1 Random Replacement

The children replace two randomly chosen individuals in the population. The parents are also candidates for selection. This can be useful for continuing the search in small populations, since weak individuals can be introduced into the population.
5.7.2 Weak Parent Replacement

In weak parent replacement, a weaker parent is replaced by a strong child. With the four individuals only the fittest two, parent or child, return to population. This process improves the overall fitness of the population when paired with a selection technique

that selects both fit and weak parents for crossing, but if weak individuals and discriminated against in selection the opportunity will never raise to replace them.
5.7.3 Both Parents

Both parents replacement is simple. The child replaces the parent. In this case, each individual only gets to breed once. As a result, the population and genetic material moves around but leads to a problem when combined with a selection technique that strongly favors fit parents: the fit breed and then are disposed of.

5.8 Search Termination (Convergence Criteria)

In short, the various stopping condition are listed as follows:

• Maximum generations–The genetic algorithm stops when the specified number of generation’s have evolved.

• Elapsed time–The genetic process will end when a specified time has elapsed.

Note: If the maximum number of generation has been reached before the specified time has elapsed, the process will end.

• No change in fitness–The genetic process will end if there is no change to the population’s best fitness for a specified number of generations.

Note: If the maximum number of generation has been reached before the specified number of generation with no changes has been reached, the process will end.

• Stall generations–The algorithm stops if there is no improvement in the objective function for a sequence of consecutive generations of length Stall generations.

• Stall time limit–The algorithm stops if there is no improvement in the objective function during an interval of time in seconds equal to Stall time limit.

Example:Maximizing a Function

Consider the problem of maximizing the function, f(x) = x2
where x is permitted to vary between 0 to 31. The steps involved in solving this problem are as follows:
Step 1: For using genetic algorithms approach, one must first code the decision variable ‘x’ into a finite length string. Using a five bit (binary integer) unsigned integer, numbers between 0(00000) and 31(11111) can be obtained. The objective function here is f(x) = x2 which is to be maximized. A single generation of a genetic algorithm is performed here with encoding, selection, crossover

and mutation. To start with, select initial population at random. Here initial population of size 4 is chosen, but any number of populations can be elected based on the requirement and application. Table 1. shows an initial population randomly selected.
[image: image1.emf]
Table 1.Selection

Step 2: Obtain the decoded x values for the initial population generated. Consider string 1,Thus for all the four strings the decoded values are obtained.
Step 3: Calculate the fitness or objective function. This is obtained by simply squaring the ‘x’ value, since the given function is
 f(x) = x2.

When, x = 12, the fitness value is,

f(x) = 144

for x = 25, f(x) = 625 and so on, until the entire population is computed
Step 4: Compute the probability of selection,

[image: image2.emf]
where
n = no of populations

f(x)=fitness value corresponding to a particular individual in the population

Σf(x)- Summation of all the fitness value of the entire population.

Considering string 1,

Fitness f(x) = 144

Σf(x) = 1155
The probability that string 1 occurs is given by,

P1 = 144/1155 = 0.1247

The percentage probability is obtained as,

0.1247∗100 = 12.47%

The same operation is done for all the strings. It should be noted that, summation of probability select is 1.

Step 5: The next step is to calculate the expected count, which is calculated as,
[image: image3.emf]
[image: image4.emf]
For string 1,

Expected count = Fitness/Average = 144/288.75 = 0.4987

Computing the expected count for the entire population. The expected count gives

an idea of which population can be selected for further processing in the mating

pool.

Step 6: Now the actual count is to be obtained to select the individuals, which would participate in the crossover cycle using Roulette wheel selection. The Roulette wheel is formed as shown in Fig. 3.15. Roulette wheel is of 100% and the probability of selection as calculated in step4 for the entire populations are used as indicators to fit into the Roulette wheel. Now the wheel may be spun and the no of occurrences of population is noted to get actual

count. String 1 occupies 12.47%, so there is a chance for it to occur at least once. Hence its actual count may be 1. With string 2 occupying 54.11% of the Roulette wheel, it has a fair chance of

being selected twice. Thus its actual count can be considered as 2.

On the other hand, string 3 has the least probability percentage of 2.16%, so their occurrence for next cycle is very poor. As a result, it actual count is 0. String 4 with 31.26% has at least one chance for occurring while Roulette wheel is spun, thus its actual count is 1. The above values of actual count are tabulated as shown is Table 1
[image: image5.emf]
Fig.15 Roulette Wheel Selection
Step 7: Now, writing the mating pool based upon the actual count as shown in Table 2

The actual count of string no 1 is 1, hence it occurs once in the mating pool. The actual count of string no 2 is 2, hence it occurs twice in the mating pool. Since the actual count of string no 3 is 0, it does not occur in the mating pool. Similarly, the actual count of string no 4 being 1, it occurs once in the mating pool. Based on this, the mating pool is formed.
[image: image6.emf]
Table 2.Crossover
Step 8: Crossover operation is performed to produce new offspring (children). The crossover point is specified and based on the crossover point, single point crossover is performed and new offspring is produced. The parents are:

Parent 1 0 1 1 0 0

Parent 2 1 1 0 0 1

The offspring is produced as,

Offspring 1 0 1 1 0 1

Offspring 2 1 1 0 0 0
In a similar manner, crossover is performed for the next strings.

Step 9: After crossover operations, new off springs are produced and ‘x’ values are decodes and fitness is calculated.

Step 10: In this step, mutation operation is performed to produce new off springs after crossover operation. As discussed in mutation-flipping operation is performed and new off springs are produced.
Table 3. shows the new offspring

after mutation. Once the off springs are obtained after mutation, they are decoded to x value and find fitness values are computed.

This completes one generation. The mutation is performed on a bit-bit by basis .The crossover probability and mutation probability was assumed to 1.0 and 0.001 respectively. Once selection, crossover and mutation are performed, the new population

is now ready to be tested.
This is performed by decoding the new strings

created by the simple genetic algorithm after mutation and calculates the fitness function values from the x values thus decoded.
[image: image7.emf]
Table 3.Mutation
 The results for successive cycles of

simulation are shown in Tables 1–3

From the tables, it can be observed how genetic algorithms combine high performance notions to achieve better performance. In the tables, it can be noted how maximal and average performance has improved in the new population. The population average fitness has improved from 288.75 to 636.5 in one generation. The maximum fitness has increased from 625 to 841 during same period. Although random processes make this best solution, its improvement can also be seen successively.

The best string of the initial population (1 1 0 0 1) receives two chances for its existence because of its high, above-average performance. When this combines at random with the next highest string (1 0 0 1 1) and is crossed at crossover point 2 (as shown in Table 3.2), one of the resulting strings (1 1 0 1 1) proves to be a very best solution indeed. Thus after mutation at random, a new offspring (1 1 1 0 1) is produced which is an excellent choice.

This example has shown one generation of a simple genetic algorithm.

PAGE
25

