
Orbital angular momentum

Consider a particle described by the Cartesian coordinates (x, y, z) ≡ r and their

conjugate momenta (px, py, pz) ≡ p. The classical definition of the orbital angular

momentum of such a particle about the origin is L = r × p, giving

Lx = ypz − z py, (1)

Ly = z px − xpz, (2)

Lz = xpy − ypx. (3)

Let us assume that the operators (Lx, Ly, Lz) ≡ L which represent the compo-

nents of orbital angular momentum in quantum mechanics can be defined in an

analogous manner to the corresponding components of classical angular momen-

tum. In other words, we are going to assume that the above equations specify

the angular momentum operators in terms of the position and linear momentum

operators. Note that Lx, Ly, and Lz are Hermitian, so they represent things which

can, in principle, be measured. Note, also, that there is no ambiguity regard-

ing the order in which operators appear in products on the right-hand sides

Eqs. (1)–(3), since all of the products consist of operators which commute.

The fundamental commutation relations satisfied by the position and linear

momentum operators are

[xi, xj] = 0, (4)

[pi, pj] = 0, (5)

[xi, pj] = i h̄ δij, (6)

where i and j stand for either x, y, or z. Consider the commutator of the operators

Lx and Lz:

[Lx, Ly] = [(ypz − z py), (z px − xpz)] = y [pz, z]px + xpy [z, pz]

= i h̄ (−ypx + xpy) = i h̄ Lz.
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Orbital angular momentum

The cyclic permutations of the above result yield the fundamental commutation

relations satisfied by the components of an angular momentum:

[Lx, Ly] = i h̄ Lz, (8)

[Ly, Lz] = i h̄ Lx, (9)

[Lz, Lx] = i h̄ Ly. (10)

These can be summed up more succinctly by writing

L × L = i h̄ L. (11)

The three commutation relations (8)–(10 ) are the foundation for the whole

theory of angular momentum in quantum mechanics. Whenever we encounter

three operators having these commutation relations, we know that the dynamical

variables which they represent have identical properties to those of the compo-

nents of an angular momentum (which we are about to derive). In fact, we shall

assume that any three operators which satisfy the commutation relations (8 )–

(10 ) represent the components of an angular momentum.

Suppose that there are N particles in the system, with angular momentum

vectors Li (where i runs from 1 to N). Each of these vectors satisfies Eq. (11),

so that

Li × Li = i h̄ Li. (12)

However, we expect the angular momentum operators belonging to different par-

ticles to commute, since they represent different degrees of freedom of the sys-

tem. So, we can write

Li × Lj + Lj × Li = 0, (13)

for i 6= j. Consider the total angular momentum of the system, L =
∑N

i=1 Li. It is

clear from Eqs. (12 ) and (13 ) that

L × L =

N∑

i=1

Li ×
N∑

j=1

Lj =
N∑

i=1

Li × Li +
1

2

N∑

i,j=1

(Li × Lj + Lj × Li)

= i h̄
N∑

i=1

Li = i h̄ L.
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Orbital angular momentum

Consider the magnitude squared of the angular momentum vector, L2 ≡ L 2x +

L 2

y

+ L 2z . The commutator of L2 and Lz is written

[L2, Lz] = [L 2x , Lz] + [L 2y , Lz] + [L 2z , Lz]. (15)

It is easily demonstrated that

[L 2x , Lz] = −i h̄ (Lx Ly + Ly Lx), (16)

[L 2y , Lz] = +i h̄ (Lx Ly + Ly Lx), (17)

[L 2z , Lz] = 0, (18)

so

[L2, Lz] = 0. (19)

Since there is nothing special about the z-axis, we conclude that L2 also commutes

with Lx and Ly. It is clear from Eqs. ( 8 )–(10 ) and (19 ) that the best we can

do in quantum mechanics is to specify the magnitude of an angular momentum

vector along with one of its components (by convention, the z-component).

It is convenient to define the shift operators L+ and L−:

L+ = Lx + iLy, (20)

L− = Lx − iLy. (21)

Note that

[L+, Lz] = −h̄ L+, (22)

[L−, Lz] = +h̄ L−, (23)

[L+, L−] = 2 h̄ Lz. (24)

Note, also, that both shift operators commute with L2.
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Eigenfunctions of orbital angular momentum

In Cartesian coordinates, the three components of orbital angular momentum can

be written

Lx = −i h̄ y
∂

∂z
− z

∂

∂y

)

Ly = −i h̄ z
∂

∂x
− x

∂

∂z

)

Lz = −i h̄ x
∂

∂y
− y

∂

∂x

)

using the Schrödinger representation. Transforming to standard spherical polar

coordinates,

x = r sin θ cosϕ,

)

)

)

y = r sin θ sinϕ,

z = r cos θ,

we obtain
Lx = i h̄ sinϕ

∂

∂θ
+ cot θ cosϕ

∂

∂ϕ

)

Ly = −i h̄ cosϕ
∂

∂θ
− cot θ sinϕ

∂

∂ϕ

)

Lz = −i h̄
∂

∂ϕ
.

L2 = L 2x + L 2y + L 2z

L2 = −h̄2




1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2



 .

26

)

)

(27)

(28)

(29)

(30)

(31)

(32)

from the above eqs. (30), (31) , (32) and (34), we can obtain:

(33)

(34)
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The eigenvalue problem for L2 takes the form

L2 = λ h̄2ψ, (35)

where is the wave-function, and λ is a number. Let us write

(r, θ,ϕ) = R(r) Y(θ,ϕ). (36)

Equation reduces to




1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2



 Y + λ Y = 0, (37)

where use has been made of Eq. (34) As is well-known, square integrable

solutions to this equation only exist when λ takes the values l (l + 1), where l is

an integer. These solutions are known as spherical harmonics, and can be written

Yml (θ,ϕ) =

√

√

√

√

√

2 l+ 1

4π

(l−m)!

(l+m)!
(−1)m e imϕ Pml (cosϕ), (38)

where m is a positive integer lying in the range 0 ≤ m ≤ l. Here, Pml (ξ) is an

associated Legendre function satisfying the equation

d

dξ

[

(1− ξ2)
dPml
dξ

]

−
m2

1− ξ2
Pml + l (l+ 1)Pml = 0.

We define

Y−m
l = (−1)m (Yml )∗,

which allowsm to take the negative values −l ≤ m < 0. The spherical harmonics

are orthogonal functions, and are properly normalized with respect to integration

over the entire solid angle:

∫π

0

∫ 2π

0

Ym∗
l (θ,ϕ) Ym

′

l ′ (θ,ϕ) sin θdθdϕ = δll ′ δmm ′.

(35)

(40)

(41)

(42)
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The spherical harmonics also form a complete set for representing general func-

tions of θ and ϕ.

By definition,

L2 Yml = l (l+ 1) h̄2 Yml , (43)

where l is an integer. It follows from Eqs. and that

Lz Y
m
l = m h̄Yml ,

where m is an integer lying in the range −l ≤ m ≤ l. Thus, the wave-function

(r, θ,ϕ) = R(r) Yml (θ,φ), where R is a general function, has all of the expected

features of the wave-function of a simultaneous eigenstate of L2 and Lz belonging

to the quantum numbers l and m.

(38)(32)

(44)
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