Chapter 1

Vector Algebra

1.1 Definitions

A vector consists of two components: *magnitude* and *direction* . (e.g. force, velocity, pressure)

A scalar consists of *magnitude* only. (e.g. mass, charge, density)

1.2 Vector Algebra

Figure 1.1: Vector algebra

$$\vec{a} + \vec{b} = \vec{b} + \vec{a}$$

 $\vec{a} + (\vec{c} + \vec{d}) = (\vec{a} + \vec{c}) + \vec{d}$

1.3 Components of Vectors

Usually vectors are expressed according to **coordinate system**. Each vector can be expressed in terms of *components*.

The most common coordinate system: Cartesian

Figure 1.2: ϕ measured anti-clockwise from position *x*-axis

Unit vectors have magnitude of 1

$$\hat{a} = \frac{\vec{a}}{|\vec{a}|} = \text{unit vector along } \vec{a} \text{ direction}$$

$$\hat{i} \quad \hat{j} \quad \hat{k} \quad \text{are unit vectors along}$$

$$\hat{\downarrow} \quad \hat{\downarrow} \quad \hat{\downarrow} \quad \\ x \quad y \quad z \quad \text{directions}$$

$$\vec{a} = a_x \,\hat{i} + a_y \,\hat{j} + a_z \,\hat{k}$$

Other coordinate systems:

1. Polar Coordinate:

Figure 1.3: Polar Coordinates

2. Cylindrical Coordinates:

 $\vec{a} = a_r \, \hat{r} + a_\theta \, \hat{\theta}$

$$\vec{a} = a_r \,\hat{r} + a_\theta \,\hat{\theta} + a_z \,\hat{z}$$

 \hat{r} originated from nearest point on z-axis (Point O')

Figure 1.4: Cylindrical Coordinates

3. Spherical Coordinates:

$$\vec{a} = a_r \, \hat{r} + a_\theta \, \hat{\theta} + a_\phi \, \hat{\phi}$$

 \hat{r} originated from Origin O

Figure 1.5: Spherical Coordinates

1.4 Multiplication of Vectors

1. Scalar multiplication:

If	$\vec{b} = m \vec{a}$	\vec{b}, \vec{a} are vectors; m is a scalar
then	b=m a	(Relation between magnitude)
	$b_x = m a_x$ $b_y = m a_y$	$\Big\}$ Components also follow relation
i.e.		$\vec{a} = a_x \hat{i} + a_y \hat{j} + a_z \hat{k}$ $m\vec{a} = ma_x \hat{i} + ma_y \hat{j} + ma_z \hat{k}$

2. Dot Product (Scalar Product):

ā

φ

\rightarrow	\rightarrow	
$\vec{a} \cdot b =$	$ \vec{a} \cdot b $	$cos\phi$

Result is **always** a scalar. It can be positive or negative depending on ϕ .

$$\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$$

 \vec{h}

 $\vec{a} \cdot \vec{b} < 0$

Notice: $\vec{a} \cdot \vec{b} = ab \cos \phi = ab \cos \phi'$ i.e. Doesn't matter how you measure angle ϕ between vectors.

Figure 1.6: Dot Product

$$\begin{split} \hat{i} \cdot \hat{i} &= |\hat{i}| \, |\hat{i}| \, \cos 0^{\circ} \, = 1 \cdot 1 \cdot 1 = 1 \\ \hat{i} \cdot \hat{j} &= |\hat{i}| \, |\hat{j}| \cos 90^{\circ} = 1 \cdot 1 \cdot 0 = 0 \\ \hline \hat{i} \cdot \hat{i} = \hat{j} \cdot \hat{j} = \hat{k} \cdot \hat{k} = 1 \\ \hat{i} \cdot \hat{j} = \hat{j} \cdot \hat{k} = \hat{k} \cdot \hat{i} = 0 \end{split}$$
If $\vec{a} = a_x \hat{i} + a_y \hat{j} + a_z \hat{k} \\ \vec{b} = b_x \hat{i} + b_y \hat{j} + b_z \hat{k} \end{cases}$
then $\vec{a} \cdot \vec{b} = a_x b_x + a_y b_y + a_z b_z \\ \vec{a} \cdot \vec{a} = |\vec{a}| \cdot |\vec{a}| \cos 0^{\circ} = a \cdot a = a^2 \end{split}$

3. Cross Product (Vector Product):

Figure 1.7: Note: How angle ϕ is measured

- Direction of cross product determined from *right hand rule*.
- Also, $\vec{a} \times \vec{b}$ is \perp to \vec{a} and \vec{b} , i.e.

$$\vec{a} \cdot (\vec{a} \times \vec{b}) = 0$$
$$\vec{b} \cdot (\vec{a} \times \vec{b}) = 0$$

• IMPORTANT:

$$\vec{a} \times \vec{a} = a \cdot a \sin 0^\circ = 0$$

$$\begin{aligned} |\hat{i} \times \hat{i}| &= |\hat{i}| \, |\hat{i}| \, \sin^{\circ} = 1 \cdot 1 \cdot 0 = 0 \\ |\hat{i} \times \hat{j}| &= |\hat{i}| \, |\hat{j}| \sin^{\circ} = 1 \cdot 1 \cdot 1 = 1 \end{aligned}$$

$$\begin{array}{c} \hat{i} \times \hat{i} = \hat{j} \times \hat{j} = \hat{k} \times \hat{k} = 0 \\ \hat{i} \times \hat{j} = \hat{k}; \ \hat{j} \times \hat{k} = \hat{i}; \ \hat{k} \times \hat{i} = \hat{j} \end{array}$$

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix} = \begin{aligned} & (a_y \, b_z - a_z \, b_y) \, \hat{i} \\ & + (a_z \, b_x - a_x \, b_z) \, \hat{j} \\ & + (a_x \, b_y - a_y \, b_x) \, \hat{k} \end{aligned}$$

4. Vector identities:

$$\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$$

$$\vec{a} \cdot (\vec{b} \times \vec{c}) = \vec{b} \cdot (\vec{c} \times \vec{a}) = \vec{c} \cdot (\vec{a} \times \vec{b})$$

$$\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c}$$

1.5 Vector Field (Physics Point of View)

A vector field $\vec{\mathcal{F}}(x, y, z)$ is a mathematical function which has a *vector* output for a *position* input.

(Scalar field $\vec{\mathcal{U}}(x, y, z)$)

1.6 Other Topics

Tangential Vector

Figure 1.8: $d\vec{l}$ is a vector that is <u>always</u> tangential to the curve C with infinitesimal length dl

Surface Vector

Figure 1.9: $d\vec{a}$ is a vector that is <u>always</u> perpendicular to the surface S with infinitesimal area da