Although Eqs. (4) to (6) elucidate the nature of the driving force operative during creep; they do not shed any light on how the process occurs at the atomic level. To do that, one has to go one step further and explore the effect of applied stresses on vacancy concentrations. For the sake of simplicity, the following discussion assumes creep is occurring in a pure elemental solid. The complications that arise from ambipolar diffusion in ionic compounds are discussed later. The equilibrium concentration of vacancies C0 under a flat and stress-free surface is given by
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where Q is the enthalpy of formation of the vacancies and the entropy of formation and all preexponential terms are included in K' and (k  is Boltzmann's Constant=1.381 x 10-23 J/atom K = 8.62 x 10-5 atom K). Since the chemical potential of an atom under a surface subjected to a stress is either greater or smaller than that over a flat surface by Δµ [Eq. (4)], this energy has to be accounted for when one is considering the formation of a vacancy. It follows that 
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And similarly:
[image: image3.emf]………………………..…….. (9)
where Cii is the concentration of vacancies just under a surface subjected to a normal stress σii. Subtracting these two equations and noting that in most situationsn  σΩ<<kT, one obtains
[image: image4.emf]……………… (10) 
which is a completely general result. In the special case where σ11 = -σ22 = σ it simplifies to
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Equations (10) and (11) are of fundamental importance since they predict that the vacancy concentrations in tensile regions are higher than those in compressive regions (Fig. 1a). In other words, stress or pressure gradients result in vacancy gradients, which in turn result in atomic fluxes carrying atoms or matter away in the opposite direction (Fig. 1b). It is only by appreciating this fact that sintering, creep, and hot pressing, among others, can be truly understood.
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Figure 1 (a) Vacancy concentration gradients that develop as a result of stress gradients. The vacancy concentrations are higher below the tensile surface. Curved arrows denote direction of vacancy fluxes. (b) Schematic of a grain of diameter d subjected simultaneously to a tensile and a compressive stress. Curved arrows denote direction of atomic fluxes. (c) Shape of grain after creep has occurred. 
Diffusional fluxes    
   The flux of atoms is related to the driving force by:
[image: image7.emf]………………………. (12)
where ci, Di, and f are, respectively, the concentration, diffusivity, and driving force per atom. Once again by assuming that σ11 = -σ22 = σ the chemical potential difference per atom between the top and side faces of the grain boundary shown in (Fig. 1b) is simply Δµ = - 2σΩ [Eq. (6)]. This chemical potential difference acts over an average distance d/2, where d is the grain diameter; that is, f = -dµ,/dx = 4σΩ/d, which when combined with Eq.  (12), results in
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The total number of atoms transported in a time t, crossing through an area A, is N = JiAt. Given that the volume associated with these atoms is ΩiN, the resulting strain from the displacement of the two opposite faces and thecorresponding strain rateis given by
[image: image9.emf]……………………… (15)
This expression is the well-known Nabarro-Herring expression for creep, and it predicts that
1- The creep rate is inversely proportional to the square of the grain size d. Thus large-grain-size materials are more resistant to creep than fine grained ceramics. This is well documented experimentally.

2. The creep rate is proportional to the applied stress, which is also experimentally observed, but as discussed in greater detail below, only at lower stresses. At higher stresses, the stress exponent is usually much greater than 1.

3. The slope of a plot of In(Tdε/dt) versus 1/kT should yield the activation energy for creep. If creep occurs by lattice diffusion, that value should be the same as that measured in a diffusion experiment. This is often found to be the case.

4. Compressive stresses result in negative strains or shrinkage, while tensile strains result in elongation parallel to the direction of applied stress (Fig. 1c).
In deriving Eq. (12.15), the diffusion path was assumed to be through the bulk, which is usually true at higher temperatures where bulk diffusion is faster than grain boundary diffusion. However, at lower temperatures, or for very fine-grained solids, grain boundary diffusion may be the faster path, in which case the expression for the creep rate, known as Coble creep, becomes
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where δgb is the grain boundary width and Ψis a numerical constant ≈14л. Here Di in Eq. (15) is replaced by Dgbδgb/d. The term 1/d represents the density or number of grain boundaries per unit area; consequently, δgb/d can be considered to be a "grain boundary cross-sectional area." It should be emphasized that Eqs. (15) and (16) are valid under the following conditions:
•The grain boundaries are the main sources and sinks for vacancies.

• Local equilibrium is established for the temperature and stress levels used; i.e., the sources and sinks are sufficiently efficient.

• Cavitation does not occur either at triple junctions or at grain boundaries.
Since both volume and grain boundary diffusion can contribute independently to creep, the overall creep rate can be represented by the sum of Eqs. (15) and (16). Note, however, that these expressions are strictly true only for pure metals or elemental crystals, since only one diffusion coefficient is involved. In general, for a binary or more complex compound, one should use a complex diffusivity Dcomplex which takes into account the various diffusion paths possible for each of the charged species in the bulk and along the grain boundaries, as well as the effective widths of the latter.
Always remember that in ionic ceramics, the rate-limiting step is always the slower-diffusing species moving along its fastest possible path. For most practical applications, however, Dcomplex simplifies to the diffusivity of the rate-limiting ion 

There is no consequence whether the flux of atoms or defects were considered. To illustrate this important notion once again, it is worthwhile to derive an expression for the creep rate based on the flux of defects. Substituting Eq. (11) in the appropriate flux equation for the diffusion of vacancies, i.e..
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Lecture No. 8


he standard tensile test, but we still need elastic modulus and fracture strength.
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