
Creep, Subcritical Crack Growth, and Fatigue
Introduction

   At low and intermediate temperatures, failure typically emanated from a preexisting flaw formed during processing or surface finishing. The condition for failure was straightforward: Fracture occurred rapidly and catastrophically when K1 > K1c. It was tacitly implied that for conditions where K1 < K1c, the crack was stable, i.e., did not grow with time, and consequently, the material would be able to sustain the load indefinitely. In reality, the situation is not that simple — preexisting cracks can and do grow slowly under steady and cyclic loadings, even when KI < KIC. For example, it has long been appreciated that in metals, cyclic loadings, even at small loads, can result in crack growth, a phenomenon referred to as fatigue. In contrast, it has long been accepted that ceramics, because of their lack of crack-tip plasticity or work hardening, were not susceptible to fatigue. More recently, however, this has been shown to be false: Some ceramics, especially those that exhibit R curve behavior, are indeed susceptible to cyclic loading.
   Another phenomenon that has been well appreciated for a long time is that the exposure of a ceramic to the combined effect of a steady stress and a corrosive environment results in slow crack growth. In this mode of failure, a preexisting subcritical crack, or one that nucleates during service, grows slowly by a stress-enhanced chemical reactivity at the crack tip and is referred to as subcritical crack growth (SCG). Unfortunately, this phenomenon is also sometimes termed static fatigue, seemingly to differentiate it from the dynamic fatigue situation just alluded to, but more to create confusion.

Last, creep, or the slow deformation of a solid subjected to a stress at high temperatures, also occurs in ceramics. Sooner or later, a part experiencing creep will either fail or undergo shape and dimensional changes that in close-tolerance applications render a part useless. 
1- Creep
Creep is the slow and continuous deformation of a solid with time that only occurs at higher temperatures, that is, T > 0.5Tm, where Tm is the melting point in Kelvins. In metals, it is now well established that grain boundary sliding and related cavity growth are the mechanisms most detrimental to creep resistance, which led to the development of single-crystal superalloy turbine blades that are very resistant to creep. In ceramics, the situation is more complex because several mechanisms, some of which are not sufficiently well understood, can lead to creep deformation. The problem is further complicated by the fact that different mechanisms may be operative over different temperature and stress regimes. In general, creep is a convoluted function of stress, time, temperature, grain size and shape, microstructure, volume fraction and viscosity of glassy phases at the grain boundaries, dislocation mobility, etc. Before one tackles the subject in greater detail, it is instructive to briefly review how creep is measured. 
Experimental Details: Measuring Creep
   Typically, the creep response of a solid is found by measuring the strain rate as a function of applied load. This, most simply, can be done by attaching a load to a sample, heating it, and measuring its deformation as a function of time. The resulting strain is plotted versus time, as shown in Fig. l a, where three regions are typically observed: (1) there is an initial, almost instantaneous response, followed by a decreasing rate of increase in strain with time. This region is known as the primary creep region. (2) There is a region where the strain increases linearly with time. This is known as the steady-state or secondary creep stage which, from a practical point of view, is the most important stage and is of major concern here. (3) There is a region known as the tertiary creep stage which occurs just before the specimen fails, where the strain rate increases rapidly with time.
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Figure 1. (a) Typical strain versus time creep curves. Experimentally not all three regions are always observed. (b) Effect of increasing stress and or temperature on the creep response of the material.
Increasing the temperature and/or stress (Fig. 1b) results in an increase in both the instantaneous strain and the steady-state creep rates and a decrease in the time to failure.
Data such as shown in Fig. 1b can be further reduced by plotting the log of the steady-state creep rate ε·ss versus the log of the applied stress a at a constant T. Such curves usually yield straight lines, which in turn implies that
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where T is a temperature-dependent constant, and p is called the creep law exponent and usually lies between 1 and 8. For p > 1, this sort of creep is commonly referred to as power law creep.
Over a dozen mechanisms have been proposed to explain the functional dependence described by Eq. (12.1), but in general they fall into one of three categories: diffusion, viscous, or dislocation creep. 
Diffusion Creep
For permanent deformation to occur, atoms have to move from one region to another, which requires a driving force of some kind. Thus, before one can even attempt to understand creep, it is imperative to appreciate the origin of the driving forces involved.

Driving force for creep
In general, the change in the Helmholtz free energy A is given as
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If the changes are occurring at constant temperature, as in a typical creep experiment, it follows that dA = -p dV. Upon rearrangement, 
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Multiplying both sides by the atomic volume Ω and noting that V/Ω is nothing but the number of atoms per unit volume, one finds that
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Thus dA/dN represents the excess (due to stress) chemical potential μ- μ◦ per atom, and μ◦ is the standard chemical potential of atoms in a stress-free solid.  By equating p with an applied stress σ, it follows that the chemical potential of the atoms in a stressed solid is given by
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By convention, a is considered positive when the applied stress is tensile and negative when it is compressive.
To better understand the origin of Eq. (4), consider the situation depicted schematically in Fig. (2), where four pistons are attached to four sides of a cube of material such that the pressures in the pistons are unequal with, say, PA > PB. These pressures will result in normal compressive forces -σ11 and  -σ 22 on faces A and B, respectively. If an atom is now removed from surface A (e.g., by having it fill in a vacancy just below the A surface),

piston A will move by a volume Ω, and the work done on the system is Ω PA = Ω σ 11. By placing an atom on surface B (e.g., by having an atom from just below the surface diffuse to the surface), work is done by the system: Ω PB = — Ω σ 22. The net work is thus
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Figure 12.2 Schematic of thought experiment invoked to arrive at Eq. (5)
which is a fundamental result because it implies that energy can be recovered (that is, ∆W is negative) if atoms diffuse from higher to lower compressive stress areas.
Note that for the case where σ11 = ​​​​- σ 22 = σ, the energy recovered

will be
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This energy is a direct measure of the driving force available for an atom to diffuse from an area that is subjected to a compressive stress to an area subjected to the same tensile stress.
The fundamental conclusion is that atom movements that result in shape changes are much more energetically favorable than ones that do not result in such changes
WORKED EXAMPLE
(a) Refer to Fig. 2. If PA is 20 MPa and PB is 10 MPa, calculate the energy changes for an atom that diffuses from interface A to interface B. Assume the molar volume is 10cm3/mol. (b) Show that for a typical ceramic ± σ Ω is on the order of 1000 J/mol. Compare that value to the elastic strain energy term of an atom subjected to the same stress. Knowing  that (Avogadro's Constant NA=6.022 x 1023 particles/mole
Answer

    (a) If the molar volume is 10cm3/mol, then Ω = 1.66 x 10-29 m3. According to convention, σ 11= -20 MPa and σ 22 = - 10 MPa, and the net energy recovered is given by Eq. (5), or 
∆WA→B= 1.66 x 10-29x 106 x {-20- (- 10)}
=1.66x 10-22 J/atom= -100 J/mol

    (b) Assuming the applied stress is 100 MPa, one obtains
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For the second part, assume Young's modulus to be 150 GPa. The elastic energy associated with a volume Ω is given by
[image: image11.emf]
which is roughly 3 orders of magnitude smaller than the σ Ω term.
Lecture No. 8


he standard tensile test, but we still need elastic modulus and fracture strength.
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