2.2.3.2. Limits of reinforcement ratio

1- Balanced condition (ρb)

Ideal condition as when the stress in the steel reaches f_{y} and stress in concrete reaches max strength at the same time which called balance condition
$\left[\sum F_{x}=0\right] C=T$;
$0.85 f^{\prime}{ }_{c} \beta_{1} c b=A_{s} f_{y}=\rho_{b} f_{y} b d$
$\rho_{b}=\frac{0.85 f_{c}^{\prime}}{f_{y}} \beta_{1}\left(\frac{\varepsilon_{c u}}{\varepsilon_{c u}+\varepsilon_{y}}\right)$
Substitute $\varepsilon_{c u}=0.003, \quad \varepsilon_{y}=\frac{f_{y}}{2.0 \times 10^{5}}$
$\rho_{b}=\frac{0.85 f_{c}^{\prime}}{f_{y}} \beta_{1}\left(\frac{600}{600+f_{y}}\right)$
$\rho=\rho_{b}$: balance, $\quad \rho>\rho_{b}$: over $R C, \quad \rho<\rho_{b}:$ underRC

2- Maximum reinforcement ratio ($\mathbf{\rho m a x}$)

To make sure that the actual reinforcement ratio $\rho \leq \rho b$ then the codes limit the reinforcement ratio by maximum ratio of reinforcement

$$
\rho_{\max }=0.85 \beta_{1} \frac{f_{c}^{\prime}}{f_{y}} \frac{\epsilon_{c u}}{\epsilon_{c u}+0.004}
$$

If the $\rho>\rho$ max it leads to sudden failure and the section is called over reinforced section.

3- Minimum reinforcement ratio ($\rho \mathrm{min}$)

To make sure that the cracks will not appear on the building you must take the reinforcement ratio not less than the minimum value that is:

Minimumsteelratio : $\rho_{\min }=\max \left(\frac{1.4}{f_{y}}, \frac{\sqrt{f_{c}^{\prime}}}{4 f_{y}}\right)$ (concretefirstcrack)
$4-\rho_{t}=0.85 \beta_{1} \frac{f_{c}^{\prime}}{f_{y}} \frac{\epsilon_{c u}}{\epsilon_{c u}+0.005}$

2.2.3.3. Reduction Factor (φ)

$\begin{array}{lr}\varphi=0.9 & \text { if } \rho \leq \rho_{t} \\ \varphi=0.483+83.3 \epsilon_{t}>0.65 & \text { if } \rho>\rho_{t}\end{array}$
where $\rho_{t}=0.85 \beta_{1} \frac{f_{c}^{\prime}}{f_{y}} \frac{\epsilon_{c u}}{\epsilon_{c u}+0.005} \quad, \quad \epsilon_{t}=\epsilon_{c u} * \frac{d_{t}-c}{c}$, and $d_{t} \approx d$
2.2.3.4. Design Procedure for Section with Tension Reinforcement only

First step: Select d from the recommended h

where $\mathrm{d}=\mathrm{h}-$ cover - stirrup diameter -0.5 main reinforcement diameter Then Second step: Find b where ($d / b \approx 1.5$ to 2)
Third step: Find $W u$
$\mathrm{Wu}=1.2 \mathrm{D} . \mathrm{L}+1.6 \mathrm{~L} . \mathrm{L}$
Fourth step:Find Mu as followed:

Case	Positive moment
At end span with discontinuous unrestrained end	$\mathrm{WuL} 2 / 11$
At end span with discontinuous integral with support end	$\mathrm{WuL2} 214$
At interior span	WuL2/16 mogative moment
Case	$\mathrm{WuL2} / 9$
At exterior face of first interior support for two spans	$\mathrm{WuL} 2 / 10$
At exterior face of first interior support for more than two spans	$\mathrm{WuL} 2 / 11$
At other faces of interior support	

Fifth step: Assume $\varphi=0.9$ to be check later
Sixth step: Compute tension reinforcement ratio
compute ρ from: $M_{u}=\varphi \rho b d^{2} f_{y}\left(1-0.59 \rho \frac{f_{y}}{f_{c}^{\prime}}\right)$
And then check $\rho_{\max } \leq \rho \leq \rho_{\text {min }}$
$\rho_{\text {min }}=\max \left(\frac{1.4}{f_{y}}, \frac{\sqrt{f_{c}^{\prime}}}{4 f_{y}}\right)$
$\rho_{\max }=0.85 \beta_{1} \frac{f_{c}{ }^{\prime}}{f_{y}} \frac{\epsilon_{c u}}{\epsilon_{c u}+0.004}$
$\beta_{1}=\left\{\begin{array}{lc}0.85 & \text { if }\left(f^{\prime}{ }_{c} \leq 28 M P a\right) \\ 0.85-0.05\left(\frac{f_{c}-28}{7}\right) & \text { if }\left(28<f^{\prime}{ }_{c} \leq 56\right) \\ 0.65 & \text { if }\left(f^{\prime}{ }_{c}>56 M P a\right)\end{array}\right.$
Seventh step: Check φ
if $\rho \leq \rho_{t}$
then $\varphi=0.9$
if $\rho>\rho_{t}$

$$
\text { then } \varphi=0.483+83.3 \epsilon_{t}>0.65
$$

and redesign from step five
where $\rho_{t}=0.85 \beta_{1} \frac{f_{c}^{\prime}}{f_{y}} \frac{\epsilon_{c u}}{\epsilon_{c u}+0.005} \quad, \quad \epsilon_{t}=\epsilon_{c u} * \frac{d_{t}-c}{c}$, and $d_{t} \approx d$
Eighth Step: select steel reinforcement

$$
A_{s}=\rho b d
$$

Ninth step: check strength of section
$M_{u} \leq \varphi \rho b d^{2} f_{y}\left(1-0.59 \rho \frac{f_{y}}{f_{c}^{\prime}}\right)$

