2.2.3.2. Limits of reinforcement ratio **1-** Balanced condition (ρb)

Ideal condition as when the stress in the steel reaches f_y and stress in concrete reaches max strength at the same time which called balance condition

$$\begin{bmatrix} \sum F_x = 0 \end{bmatrix} C = T ;$$

$$0.85f'_c \beta_1 cb = A_s f_y = \rho_b f_y bd$$

$$\rho_b = \frac{0.85f'_c}{f_y} \beta_1 \left(\frac{\varepsilon_{cu}}{\varepsilon_{cu} + \varepsilon_y}\right)$$

Substitute $\varepsilon_{cu} = 0.003$, $\varepsilon_y = \frac{f_y}{2.0 \times 10^5}$

$$\rho_b = \frac{0.85f'_c}{f_y} \beta_1 \left(\frac{600}{600 + f_y}\right)$$

 $\rho = \rho_b$: balance, $\rho > \rho_b$: over RC, $\rho < \rho_b$: under RC 2- Maximum reinforcement ratio (ρ max)

To make sure that the actual reinforcement ratio $\rho \le \rho b$ then the codes limit the

reinforcement ratio by maximum ratio of reinforcement

$$\rho_{max} = 0.85\beta_1 \frac{f_c'}{f_y} \frac{\epsilon_{cu}}{\epsilon_{cu} + 0.004}$$

If the $\rho > \rho max$ it leads to sudden failure and the section is called over reinforced section.

3- Minimum reinforcement ratio (pmin)

To make sure that the cracks will not appear on the building you must take the reinforcement ratio not less than the minimum value that is:

2.2.3.4. Design Procedure for Section with Tension Reinforcement only First step: Select *d* from the recommended *h*

		<u> </u>				
Babylon Unive	oneway slab	L/20	L/24	L/28	L/10	llege of Engineering
	BEAM	L/16	L/18.5	L/21	L/8	

where d = h - cover - stirrup diameter -0.5 main reinforcement diameter Then Second step: Find b where (d / b \approx 1.5 to 2)

Third step: Find Wu

Wu = 1.2 D.L + 1.6 L.L

Fourth step:Find Mu as followed:

Case	Positive
	moment
At end span with discontinuous unrestrained end	WuL2/11
At end span with discontinuous integral with support end	WuL2/14
At interior span	WuL2/16
Case	Negative
n, n	moment
At exterior face of first interior support for two spans	WuL2/9
At exterior face of first interior support for more than two	WuL2/10
spans	
At other faces of interior support	WuL2/11

Fifth step: Assume $\varphi = 0.9$ to be check later

Sixth step: Compute tension reinforcement ratio

compute ρ from: $M_u = \varphi \rho b d^2 f_y \left(1 - 0.59 \rho \frac{f_y}{f'_c} \right)$ And then check $\rho_{max} \le \rho \le \rho_{min}$ $\rho_{min} = \max\left(\frac{1.4}{f_y}, \frac{\sqrt{f_c'}}{4f_y}\right)$ $\rho_{max} = 0.85 \beta_1 \frac{f_c'}{f_y} \frac{\epsilon_{cu}}{\epsilon_{cu} + 0.004}$

$$\beta_{1} = \begin{cases} 0.85 & \text{if } (f'_{c} \le 28 \text{ MPa}) \\ 0.85 - 0.05 \left(\frac{f'_{c} - 28}{7}\right) \text{if } (28 < f'_{c} \le 56) \\ 0.65 & \text{if } (f'_{c} > 56 \text{ MPa}) \end{cases}$$

Seventh step: Check φ

$$if \ \rho \le \rho_t \qquad \qquad then \ \varphi =$$

Babylon University

0.9

CV.

$$\begin{array}{ll} if \ \rho > \rho_t & then \ \varphi = 0.483 + 83.3 \ \epsilon_t > 0.65 \\ and \ redesign \ from \ step \ five \\ where \ \rho_t = 0.85 \beta_1 \frac{f_c'}{f_y} \frac{\epsilon_{cu}}{\epsilon_{cu} + 0.005} &, \ \epsilon_t = \epsilon_{cu} * \frac{d_t - c}{c} \ , \ and \ d_t \approx d \\ \mbox{Eighth Step: select steel reinforcement} \\ A_s = \rho bd \end{array}$$

Ninth step: check strength of section

$$M_u \le \varphi \rho b d^2 f_y \left(1 - 0.59 \rho \frac{f_y}{f'_c} \right)$$

Babylon University