
Characteristics  of 

MultiprocessorsMultiprocessors



• A multiprocessor system is an interconnection of 
two or more CPUs with memory and input—
output equipment. The term “processor” in 
multiprocessor can mean either a central 
processing unit (CPU) or an input—output 
processor (lOP). 

• As it is most commonly defined, a multiprocessor 
system implies the existence of multiple CPUs, system implies the existence of multiple CPUs, 
although usually there will be one or more IOPs 
as well. 

• Multiprocessors are classified as multiple 
instruction stream, multiple data stream 

(MIMD) systems.



• There are some similarities between Multiprocessor
and Multicomputer systems since both support 
concurrent operations. 

• However, there exists important distinction between a 
system with multiple computers and a system with 
multiple processors. 

• Computers are interconnected with each other means 
of communication lines to form a computer network. 

• The network consists of several autonomous • The network consists of several autonomous 
computers that may or may not communicate with 
each other. 

• A multiprocessor system is controlled by one operating 
system that provides interaction between processors 
and all the components of the system cooperate in the 
solution of a problem.



• Multiprocessing improves the reliability of the system so 
that a failure or error in one part has a limited effect on the 
rest of the system. 

• If a fault causes one processor to fail, a 
second processor can be assigned to perform 
the functions of the disabled processor.

• The system as a whole can continue to function correctly 
with perhaps some loss in efficiency.

• The benefit derived from a multiprocessor organization is • The benefit derived from a multiprocessor organization is 
an improved system performance. 

• The system derives its high performance from the fact that 
computations can proceed in parallel in one of two ways. 

• 1. Multiple independent jobs can be made to operate in 
parallel.

• 2. A single job can be partitioned into multiple parallel 
tasks.



• Multiprocessors are classified by the way their memory 
is organized.

• A multiprocessor system with common shared 
memory is classified as a shared-memory or tightly 
coupled multiprocessor.

• In fact, most commercial tightly coupled 

Tightly coupled

• In fact, most commercial tightly coupled 
multiprocessors provide a cache memory with each 
CPU.

• in addition, there is a global common memory that all 
CPUs can access. 

• Information can therefore be shared among  the CPUs 
by placing it in the common global memory.



Loosely coupled
• An alternative model of microprocessor is the distributed-memory or 

loosely coupled system. Each processor element in a loosely coupled 

system has its own private local memory. 

• The processors are tied together by a switching scheme designed to 

route information from one processor to another through a message-

passing scheme. 

• The processors relay program and data to other processors in • The processors relay program and data to other processors in 

packets. 

• A packet consists of an address, the data content, and some error 

detection code. 

• The packets are addressed to a specific processor or taken by the first 

available processor, depending on the communication system used. 

• Loosely coupled systems are most efficient when the interaction 

between tasks is minimal, whereas tightly coupled systems can 

tolerate a higher degree of interaction between tasks.



Interconnection Structures
• The components that form a multiprocessor system are 

CPUs,  lOPs connected to input—output devices, and a 
memory unit that may be partitioned into a number of 
separate modules. 

• The interconnection between the components can have 
different physical configurations, depending on the number 
of transfer paths that are available between the processors 
and memory in a shared memory system or among the 
processing elements in a loosely coupled system. processing elements in a loosely coupled system. 

• There are several physical forms  available for establishing 
an interconnection network, Some of these schemes are 
presented in this section:

• 1. Time-shared common bus

• 2, Multiport memory

• 3. Crossbar switch

• 4. Multistage switching network

• 5. Hypercube system



Time-Shared Common Bus

• A common-bus multiprocessor system consists of a number 
of processors connected through a common path to a 
memory unit. 

• Only one processor can communicate with the memory or 
another processor at any given time. 

• Transfer operations are conducted by the processor that is • Transfer operations are conducted by the processor that is 
in control of the bus at the time. 

• Any other processor wishing to initiate a transfer must first 
determine the availability status of the bus, and only after 
the bus becomes available can the processor address the 
destination unit to initiate the transfer. 

• A command is issued to inform the destination unit what 
operation is to be performed. 



• The receiving unit recognizes its address in the bus 
and responds to the control signals from the sender, 
after which the transfer is initiated. 

• The system may exhibit transfer conflicts since one 
common bus is shared by all processors. 

• These conflicts must be resolved by incorporating a 
bus controller that establishes priorities among the 
requesting units.



• A more economical implementation of a dual bus 
structure is depicted in Fig. 13-2. 

• Here we have a number of local buses each connected to 
its own local memory and to one or more processors. 

• Each local bus may be connected to a CPU, an lOP, or any 
combination of processors. A system bus controller links 
each local bus to a common system bus. 

• The I/O devices connected to the local IOP, as well as the 
local memory, are available to the local processor.local memory, are available to the local processor.

• The memory connected to the common system bus is 
shared by all processors. 

• Only one processor can communicate with the shared 
memory and other common resources through the 
system bus at any given time.

•



• The other processors are kept busy communicating with their 

local memory and I/O devices. 



Multiport Memory
• A multiport memory system employs separate buses between 

each memory module and each CPU. This is shown in Fig. 13-
3 for four CPUs and four memory modules (MMs). Each 
processor bus is connected to each memory module. A 
processor bus consists of the address, data, and control lines 
required to communicate with memory.



• The memory module is said to have four ports 

and each port accommodates one of the 

buses. The module must have internal control 

logic to determine which port will have access 

to memory at any given time. 

• Memory access conflicts are resolved by 

assigning fixed priorities to each memory port.assigning fixed priorities to each memory port.

• Thus CPU 1 will have priority over CPU 2, CPU 

2 will have priority over CPU 3, and CPU 4 will 

have the lowest priority.



• The advantage of the multiport memory 

organization is the high transfer rate that can 

be achieved because of the multiple paths 

between processors and memory. 

• The disadvantage is that it requires 

expensive memory control logic and a large 

number of cables and connectors. number of cables and connectors. 

• As a consequences this interconnection 

structure is usually appropriate for systems 

with a small number of processors.



Crossbar Switch
• The crossbar switch organization 

consists of a number of crosspoints
that are placed at intersections 
between processor buses and memory 
module paths. 

• Figure 13-4  shows a crossbar switch 
interconnection between four CPUs 
and four memory modules. 

• The small square in each crosspoint is a 
switch that determines the path from a switch that determines the path from a 
processor to a memory module. 

• Each switch point has control logic to 
set up the transfer path between a 
processor and memory. 

• It examines the address that is placed 
in the bus to determine whether its 
particular module is being addressed. 



• It also resolves multiple requests for access to the same memory 
module on a predetermined priority basis.

• Figure 13-5  shows the functional design of a crossbar switch 
connected to one memory module. The circuit consists of 
multiplexers that select the data, address, and control from one 
CPU for communication with the memory module. 

• Priority levels are established by the arbitration logic to select one 
CPU when two or more CPUs attempt to access the same memory.

A crossbar switch  

organization supports organization supports 

simultaneous transfers from 

all memory modules because 

there is a separate path 

associated with each module. 

However, the hardware 

required to implement the 

switch can become quite 

large and complex.



Multistage switching  Network

• The basic component of a multistage 
network is a two-input, two-output 
interchange switch. As shown in Fig. 
13-6, the 2 x 2 switch has two inputs, 
labeled A and B, and two outputs, 
labeled 0  and 1. 

• There are control signals (not shown) 
associated with the switch that 
establish the interconnection 
between the input and output between the input and output 
terminals. 

• .

•The switch has the capability of connecting input A to either of the outputs. 

Terminal B of the switch;  behaves in a similar fashion. The switch also has the 

capability to arbitrate between conflicting requests.

• If inputs A and B both request the same output terminal, only one of them will be 

connected; the other will be blocked. 

•Using the 2 x 2 switch as a building block, it is possible to build a multistage network 

to control the communication between a number of sources and destinations 



• To see how this is done, consider the 
binary tree shown in Fig. 13-7. 

• The two processors P1 and P2 are 
connected through switches to eight 
memory modules marked in binary 
from 0  0  0  through 111. 

• The path from a source to a 
destination is determined from the 
binary bits of the destination 
number .number .

The first bit of the destination number determines the switch output in the first level. 

The second bit specifies the output of the switch in the second level, and the third bit 

specifies the output of the switch in the third level. 

For example, to connect P1 to memory 101, it is necessary to form a path from P to 

output 1 in the first-level switch, output  0  in the second-level switch, and output 1 in 

the third-level switch. It is clear that either P1 or P2 can be connected to any one of 

the eight memories, Certain request patterns, however, cannot be satisfied 

simultaneously. For example, if P1 is connected to one of the destinations 0  0  0  

through  0 11 ,P2 can be connected to only one of the destinations 1 0  0  through 111.



Many different topologies have 

been proposed for multistage 

switching networks to control 

processor—memory 

communication in a tightly 

coupled multiprocessor system 

or to control the communication 

between the processing 

elements in a loosely coupled 

One such topology is the omega switching network shown in Fig. 13-

8. . In this configuration, there is exactly one path from each source 

to any particular destination. Some request patterns, however, 

cannot be connected simultaneously. For example, any two sources 

cannot he connected simultaneously to destinations 0  0  0  through 

111.

elements in a loosely coupled 

system. 



•A particular request is initiated in the switching network by the 

source, which sends a 3-bit pattern representing the destination 

number. As the binary pattern moves through the network, each level 

examines a different bit to determine the 2 x 2 switch setting. Level 1 

inspects the most significant bit, level 2 inspects the middle bit, and 

level 3 inspects the least significant bit. 

•W    hen the request arrives on either input of the 2 x 2 switch, it is 

routed a the upper output if the specified bit is  0  or to the lower 

output if the bit is 1.

•In tightly coupled multiprocessor system, the source is a processor and the  

destination is a memory module. 

•The first pass through the network sets up the path. 

•Succeeding passes are used to transfer the address into memory and then 

transfer the data in either direction, depending on whether the request is a 

read or a write.

• In a loosely coupled multiprocessor system, both the source and destination 

are processing elements. After the path is established, the source processor 

transfers a message to the destination processor.

output if the bit is 1.



Hypercube Interconnection
• The hypercube or binary n-cube multiprocessor structure is 

a loosely coupled system composed of  N   = 2^  n 
processors interconnected in an n-dimensional binary cube. 

• Each processor forms a node of the cube. Although it is 
customary to refer to each node as having a processor, in 
effect it contains not only a CPU but also local memory and 
I/O interface. 

• Each processor has direct communication paths-to n other • Each processor has direct communication paths-to n other 
neighbor processors. These paths correspond to the edges 
of the cube. There are 2^ n distinct  n-bit binary addresses 
that can be assigned to the processors. 

• Each processor address differs from that of each of its n 
neighbors by exactly one bit position.



• Figure 13- 9  shows the 
hypercube structure for n = 1, 2, 
and 3. 

• A one-cube structure has n = 1 
and 2^ n = 2. It contains two 
processors interconnected by a 
single path. 

• A two-cube structure has n= 2 
and 2 ^ 2 = 4. lt contains four 
nodes interconnected as a 
square. 
nodes interconnected as a 
square. 

•A three-cube structure has eight nodes interconnected as a cube. An n-cube structure 

has 2^  n nodes with a processor residing in each node.

• Each node is assigned a binary address in such a way that the addresses of two 

neighbors differ in exactly one bit position.

• For example, the three neighbors of the node with address 100   in a three-cube 

structure are 0 0 0  ,11 0  ,and 1 0 1. Each of these binary numbers differs from address 

100  by one bit value.



• Routing messages through an n-cube structure 
may take from one to n links from a source node 
to a destination node. 

• For example, in a three-cube structure, node 000 
can communicate directly with node 001. 

• It must cross at least two links to communicate 
with 011 (from 000 to 001 to 011 or from 000 to 
010 to 011). 010 to 011). 

• It is necessary to go through at least three links to 
communicate from node 000 to node 111.

• A routing procedure can be developed by 
computing the exclusive-OR of the source node 
address with the destination node address. 



• The resulting binary value will have 1 bits corresponding 

to the axes on which the two nodes differ. 

• EX.  Assume S=010 ,and D= 001

0  1  1   =001    010

0   1   2

2(010)        0(000)       1(001)

XORThese paths have to      

follow   

2(010)        0(000)       1(001)



• The following example illustrates the use of a 
deterministic routing technique in a hypercube network.

• Example : Assume that S =S5S4 . . . S1S0 to be the source node address, and that D = 
D5D4 . . . D1D0 is the destination node address in a six-dimensional hypercube 
message passing system. Let R = S  XOR   D be the exclusive OR function executed 
bitwise for each node in the path.

• Consider the case whereby S = 10(001010) and D = 39(100111).

001010 100111 =1  0  1  1  0  1

0      2   3     5

The order in which these dimensions are traversed is not important. Let us 
assume that the message will follow the route by traversing the following 
dimensions 5, 3, 2, and 0. Then the route is totally determined as:
10 (001010)     42(101010)     34(100010)     38(100110)      39 (100111).

XORThese pathes have to follow

source destination



Cache  Coherence

• The primary advantage of cache is its ability to reduce 
the average access time in uniprocessors. When the 
processor finds a word in cache during a read 
operation, the main memory is not involved in the 
transfer. If the operation is to write, there are two transfer. If the operation is to write, there are two 
commonly used procedures to update memory. 

• In the write-through policy, both cache and main 
memory are updated with every write operation. 

• In the write-back policy, only the cache is updated and 
the location is marked so that it can be copied later 
into main memory.



• In a shared memory multiprocessor system, all the 
processors share a common memory. In addition, each 
processor may have a local memory, part or all of which 
may be a cache.

• The same information may reside in a number of copies in 
some caches and main memory. To ensure the ability of the 
system to execute memory operations correctly, the 
multiple copies must be kept identical. 

• This requirement imposes a cache coherence 
problem. problem. 

• A memory scheme is coherent if the value returned on a 
load instruction is always the value given by the latest store 
instruction with the same address. 

• Without a proper solution to the cache coherence problem, 
caching cannot be used in bus-oriented multiprocessors 
with two or more processors.



Conditions for Incoherence

• Cache coherence problems exist in 
multiprocessors with private caches 
because of the need to share writable 
data. 

• Read-only data can safely be 
replicated without cache coherence 
enforcement mechanisms. 

• To illustrate the problem, consider the 
three-processor configration with 
private caches shown in Fig. 13-12. private caches shown in Fig. 13-12. 

Sometime during the operation an element X from main memory is loaded into the 

three processors, P1, P2, and P3.

As a consequence, it is also copied into the private caches of the three processors. 

For simplicity, we assume that X contains the value of 52. The load on X to the three 

processors results in consistent copies in the caches and main memory.



• If one of the processors performs a store to X, the copies of 
X in the caches become inconsistent. A load by the other 
processors will not return the latest value.

• Depending on the memory update policy used in the 
cache, the main memory may also be inconsistent with 
respect to’ the cache. 

• This is shown in Fig. 13-13. A store to X (of the value of 120) 
into the cache of processor P1 updates memory to the new 
value in a write-through policy. 

• A write-through policy maintains consistency between • A write-through policy maintains consistency between 
memory and the originating cache, but the other two 
caches are inconsistent since they still hold the old value. 

• In a write-back policy, main memory is not updated at 
the time of the store. The copies in the other two caches 
and main memory are inconsistent. Memory is updated 
eventually when the modified data in the cache are copied 
back into memory.



• Another configuration that may cause consistency problems is a direct memory 

access (DMA) activity in conjunction with an TOP connected to the system bus.

• In the case of input, the DMA may modify locations in main memory that also reside in 

cache without updating the cache.

• During a DMA output, memory locations may be read before they are updated from the 

cache when using a write-back policy. 1/0-based memory incoherence can he overcome 

by making the IOP a participant in the cache coherent solution that is adopted in the 

system.



Solutions to the Cache Coherence Problem

• A simple scheme is to disallow private caches for each processor and have a shared cache 
memory associated with main memory. 

• Every data access is made to the shared cache.

• This method violates the principle of closeness of Cpu to cache and increases the average 
memory access time. 

• In effect, this scheme solves the problem by avoiding it.

• For performance considerations it is desirable to attach a 
private cache to each processor. 

• One scheme that has been used allows only nonshared and • One scheme that has been used allows only nonshared and 
read-only data to be stored in caches. Such items are called 
Cachable.

• Shared writable data are noncachable. 

• The compiler must tag data as either cachable or 
noncachable, and the system hardware makes sure that 
only cachable data are stored in caches.

• The noncachable data remain in main memory. 



• This method restricts the type of data stored in caches 
and introduces an extra software overhead that may 
degradate performance.

• A scheme that allows writable data to exist in at 
least one cache is a method that employs a centralized 
global table in its compiler. 

• The status of memory blocks is stored in the central 
global table. 

• Each block is identified as read-only (RO) or read and • Each block is identified as read-only (RO) or read and 
write (RW). 

• All caches can have copies of blocks identified as RO.

• Only one cache can have a copy of an RW block. 

• Thus if the data are updated in the cache with RW 
block, the other caches are not affected because they 
do not have a copy of this block.



• The cache coherence problem can be solved by means of a 
combination of software and hardware or by means of hardware-only 
schemes.

• The two methods mentioned previously use software-based 
procedures require the ability to tag information in order to disable 
caching of shared writable data. 

• Hardware-only solutions are handled by the hardware automatically 
and have the advantage of higher speed and program transparency.

• In the hardware solution, the cache controller is specially designed to 
allow it to monitor all bus requests from CPUs and IOPs.

• All caches attached to the  bus constantly monitor the network for • All caches attached to the  bus constantly monitor the network for 
possible write operations. 

• Depending on the method used, they must then either update or 
invalidate their own cache copies when a match is detected.

• The bus controller that monitors this action is referred to as a 
snoopy cache controller. 

• This is basically a hardware unit designed to maintain a bus-watching 
mechanism over all the caches attached to the bus.



• Various schemes have been proposed to solve the cache coherence 
problem by means of snoopy cache protocol. 

• The simplest method is to adopt a write-through policy and use the 
following procedure. 

• All the snoopy controllers watch the bus for memory store 
operations. 

• When a word in a cache is updated by writing into it, the 
corresponding location in main memory is also updated. 

• The local snoopy controllers in all other caches check their memory 
to determine if they have a copy of the word that has been 
overwritten.overwritten.

• If a copy exists in a remote cache, that location is marked invalid. 

• Because all caches snoop on all bus writes, whenever a word is 
written, the net effect is to update it in the original cache and main 
memory and remove it from all other caches.

• If at some future time a processor accesses the invalid item from 
its cache, the response is equivalent to a cache miss, and the 
updated item is transferred from main memory. 

• In this case inconsistent versions are prevented.



Hardware Solution: Snooping Cache

• Widely used in bus-based multiprocessors.

• The cache controller constantly watches the bus.

• Write Invalidate
• When a processor writes into C, all copies of it in

• other processors are invalidated. These processors

• have to read a valid copy either from M, or from the

• processor that modified the variable.• processor that modified the variable.

• Write Broadcast
• Instead of invalidating, why not broadcast the updated

• value to the other processors sharing that copy?

• This will act as write through for shared data, and

• write back for private data.

• Write broadcast consumes more bus bandwidth  
compared to write invalidate. Why?



MESI Protocol 
• It is a version of the snooping cache protocol.

• Each cache block can be in one of four states:

• INVALID Not valid

• SHARED Multiple caches may hold valid copies.

• EXCLUSIVE No other cache has this block, M-block is valid

• MODIFIED Valid block, but copy in M-block is not valid.

When a cache block changes its status from M, it first updates the 

main memory.



Examples of state transitions under 

MESI protocol
A. Read Miss



B. More Read Miss

Following the read miss, the holder of the modified copy 

signals the initiator to try again. Meanwhile, it seizes the 

bus, and write the updated copy into the main memory.



C. Write Miss


