
Chapter 10: Spin angular momentum 
 

Until this point, we have only discussed quantities that have a classical analogue. More 
specifically, we took systems that one can describe in terms of classical mechanics, such 
as the free particle, harmonic oscillator, rigid rotor, and a particle subject to a central 
potential, and examined their quantum analogues. In this chapter we encounter, for the 
first time, a quantity, called the spin, which does not have a classical analogue! We know 
that it exists because we can measure it. In fact, several extremely powerful modern 
technologies in chemistry, biology and medicine are based on such measurements.  In 
this chapter, we introduce the spin operators and learn how to work with them.  
 
The spin operators    
 
Until this point, we found the operators that represent physical quantities by applying the 
quantization rules to the corresponding classical expressions (see chapter 3). More 
specifically, any classical quantity can be expressed in terms of positions and momenta, 
and the corresponding operator can be obtained by replacing them with the position and 
momentum operators. How do we know what operators represent a quantity like the spin 
that has no classical analogue? The answer is surprisingly simple (at least in principle!)– 
We determine them empirically, by requiring that the operators we choose lead to 
predictions which are consistent with experimental observations. The spin operators that 
we will define below were determined in this manner. 
 
The first observation is that the spin is a 3D vector quantity (like position, momentum 
and angular momentum in 3D).  We will denote the spin vector by S

G
, and the operators 

that correspond to its Cartesian components by . We will also define the 

operator that corresponds to the square of the spin vector amplitude: .  

ˆ ˆ ˆ, ,x y zS S S
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As it turns out, the spin is observed to be similar to orbital angular momentum, in the 
sense that the commutators of are identical to those of , namely: 2ˆ ˆ ˆ ˆ, , ,x y zS S S S 2ˆ ˆ ˆ ˆ, , ,x y zL L L L
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For this reason, we refer to the spin as an angular momentum (although, it does not 
correspond to a specific type of orbital angular momentum!). Only based on those 
commutators, one can then show that (stated without proof): 

 2 2 1 3ˆThe eigenvalues of  are given by ( 1) , with 0, ,1, ,...
2 2

S s s s+ ==  (2) 

 ˆThe eigenvalues of  are given by , with , 1,..., 1,z s sS m m s s= − − + −= s s  (3) 
It should be noted that the orbital angular momentum operators, which satisfy the same 
commutation relations, has eigenvalues of a similar form (with the quantum numbers 
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denoted by  and , rather than by and l m s sm ).However, there are two important 
differences between spin and orbital angular momenta: 

1. While the orbital angular momentum quantum number l  can only obtain integer 
values, that is , spin angular momentum quantum number  can 
be half-integer, that is 

0,1,2,3,...l = s
0,1/ 2,1,3 / 2,...s =  

2. The orbital angular momentum of a particle can be increased indefinitely, by 
changing the state of the particle to that corresponding to a larger value of . 
However, the spin quantum number of an elementary particle such as the 
electron, proton or neutron, is fixed (this is an empirical observation)!  

l
s

 
Those differences reveal why the spin cannot and should not be thought about as a type 
orbital angular momentum. Furthermore, the fact that  is fixed implies the spin vanishes 
at the classical limit (which is why it does not have a classical analogue). 

s

 
Spin-1/2 particles  
 
In chemistry, we are mostly concerned with the spins of electrons and protons. As it turns 
out, electrons and protons are spin-1/2 particles, that is they correspond to  (this 
is an empirical observation!). We will therefore restrict our discussion to the spin-1/2 
case.  

1/ 2s =

 
Eigenfunctions and eigenvalues 
 
For a spin-1/2 particle, , such that  the value of  is always known with 
certainty, and is given by  This means that the 
wave function that describes the state of the particle must be an eigenfunction of  the 
operator , with the eigenvalue . Since  commutes with , we know that the 
value of  can also be known with certainty (note that we could have chosen any 
component of the spin angular momentum vector, and that the choice of the z component 
is arbitrary, although it follows the standard convention). According to Eq.(3),  has 
two possible eigenvalues:   and 

1/ 2s = 2S
2 2( 1/ 2) (1/ 2)(1 1/ 2) 3 / 4.s s + = + == = 2=

2Ŝ 23 / 4= 2Ŝ ˆ
zS

zS

ˆ
zS

/ 2= / 2−= . Those two eigenvalues correspond to two 
distinctly different eigenfunctions that we will denote by α  and β , respectively: 

 ˆ ˆ;
2 2z zS Sα α β= =
= β−

=  (4) 

It is important to note that α  and β  are fundamentally different from the wave functions 
of the form ( )rψ G that we have encountered until this point. As was discussed in Chapters 
2 and 3, ( )rψ G  is actually a representation, in terms of the { }0(r rδ − )G G  continuous basis, of 

a vector in an infinitely dimensional Hilbert space. In the case of the spin-1/2, { },α β  is a 
basis of the corresponding state space, which means that in this case, the Hilbert space is 
two-dimensional, rather than infinitely dimensional!  Thus, α  and β  cannot be 
represented by functions of the coordinates! 
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Because { },α β  is a basis of the spin state space, any spin state can be written as a linear 
combination of those two states, c cψ α+ −β= + . Although this is just one possible basis, 
we are going to stick with it from now on (only for the sake of simplicity). Different spin 
states will be characterized by different values of the two coefficients  and , which 
are complex numbers. The inner product of two states 

c+ c−
c cψ α+ −β= +  and d dχ α β+ −= +  

is defined in the usual way by: 

 ( )* * * *d
c c c d c d

d
ψ χ +

+ − + +
−

⎛ ⎞
= =⎜ ⎟

⎝ ⎠
− −+  (5) 

For example: 
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 (6) 

Thus, we see that α  and β  are normalized and orthogonal (orthogonality is also implied 
by the fact that α  and β  are eigenfunctions with different eigenvalues of the Hermitian 
operator ). Also, a spin state is normalized if  ˆ

zS

 ( ) 2 2* * 1
c

c c c c
c

ψ ψ +
+ − + −

−

⎛ ⎞
= = +⎜ ⎟

⎝ ⎠
=   . (7) 

 
Operators 
 
Based on the discussion above, we can immediately construct the matrices that 
represent the operators  and  in terms of the 

2 2×
2Ŝ ˆ

zS { },α β  basis: 

 
ˆ ˆ 1 02 2ˆ
ˆ ˆ 0 12

2 2

z z
z

z z
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α α α βα α α β
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= =
=�
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⎟

⎝ ⎠
 (8) 

 

2 2

2 2 2
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3 3
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4 4
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S
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⎝ ⎠
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=�

= =
⎞
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We will utilize the raising and lowering operators in order to obtain the matrices that 
represent  and . Following the same procedure as in the case of orbital angular 
momentum, we define  

ˆ
xS ˆ

yS

 
( )
( )

ˆ ˆ ˆˆ ˆ ˆ / 2

ˆ ˆ ˆ ˆ ˆ ˆ / 2

xx y

x y y

S S SS S iS

S S iS S S S

+ −+

− + −

⎧ = +⎧ = +⎪ ⎪⇔⎨ ⎨
= − = −⎪ ⎪⎩ ⎩ i

 (10) 

Based on the commutators (which are the same as for orbital angular momentum!), we 
can show that  

 
ˆ ˆ0 ;
ˆ ˆ; 0

S S

S S

α β α

α β β
+ +

− −

= =

= =

=

=
 (11) 

which means that (verify that !) 
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= =
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Thus, the matrices that represent ˆ ˆ,S S+ − ,  and in terms of the ˆ
xS ˆ

yS { },α β  basis are given 
by 
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It should be noted that the matrices that represent  and  are not diagonal, which is 

due to the fact that those operators do not commute with  (remember that {

ˆ
xS ˆ

yS
ˆ

zS },α β are 

the eigenstates of ). Also note that the off-diagonal elements of the matrices which 

represent  and  are complex conjugates of each other, which testifies to the fact that 

those are Hermitian operators. The matrices that represent 

ˆ
zS

ˆ
xS ˆ

yS
ˆ ˆ,S S+ −  do not satisfy this 

condition, which is consistent with the fact that they are not hermitian.  
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Spin-orbital states 
 
Until this chapter, we have described the state of spin-1/2 particles like electrons and 
protons by a wave function ( )rφ G , which depends on the particle’s actual position. This 
wave function contained all the information one needs regarding measurements of 
quantities that have a classical analogue, such as position, momentum and orbital angular 
momentum. However, we now know that a complete description of the particle’s state 
must also include a specification of its spin state, which is completely missing from 

( )rφ G . We therefore have to extend the definition of what is meant by a “quantum state” 
in order to address this issue. 
Consider, for example, an electron in a Hydrogen atom, which occupies the , , ( , , )n l m rφ θ ϕ  
orbital. This electron also has a spin. Assume that the spin state of the electron is 
described by the spin state function α  (the so called “spin-up state”). A complete 
description of the state of the particle is given by , , ( , , )n l m rφ θ ϕ α , which is called a spin-
orbital state, or simply a spin-orbital. Similarly, if the spin state is given by β , then the 
electron is described by the spin-orbital , , ( , , )n l m rφ θ ϕ β  (“spin down”). In fact, the spin 
state can be given by a linear combination of α and β , such that the spin-orbital is given 
by [ ], , ( , , )n l m r c cφ θ ϕ α β+ −+ . The state of the electron can also be given by a linear 
combination of two spin-orbitals with opposite spins, for example 
[ ]1 2( , , ) ( , , ) / 2S Sr rφ θ ϕ α φ θ ϕ β+ . In those cases, the state is a superposition of  spin-up 
and spin-down states. 
The normalization of spin-orbital states must include the two types of inner product (spin 
and orbital). For example: 

 

[ ] [ ]

{ }

{ }

, , , , , , , ,

1 2 1 2

1 1 2 2 1 2 2 1

1 1 1

1 1
2 2

1
2
1 1 1 1 1 0 0 0 0 1
2

n l m n l m n l m n l m

s s s s

s s s s s s s s

φ α φ α α α φ φ

φ α φ β φ α φ β

α α φ φ β β φ φ α β φ φ β α φ φ

= = × =

+ +

= + + +

= × + × + × + × =

 (14) 

Similarly, expectation values that only involve the spin or orbital degrees of freedom only 
depend on the spin and orbital components of the spin-orbital, respectively. For example: 

 

, , , , , , , ,

, , , , , , , , , , , ,
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, , , , , , , ,
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=
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[ ] [ ]1 2 1 2 1 1 2 2

1 2 2 1

1 1 1ˆ ˆ ˆ{
22 2

1ˆ ˆ } 0
2 2 2

s s z s s z s s z s
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Magnetic resonance  
 
The Zeeman Hamiltonian 
 
We know about the existence of the spin because we can measure it. But how exactly can 
we measure it? The most direct way of measuring the spin is based on its interaction with 
magnetic fields. This interaction also forms the foundation of nuclear and electron 
magnetic resonance techniques that are among the most powerful in chemistry, biology 
and medicine.  
The interaction of the spin with a magnetic field  S

G
( , , )x y zB B B B=

G
 is given by the 

Zeeman Hamiltonian: 

 ( )ˆ ˆ ˆ ˆˆ
x x y y z zH B S B S B S B Sγ γ= − = − + +

GG
i  (17) 

The constant γ  is called the magnetogyric ratio. It is usually written as a product of two 
other constant: 
 gγ β=  (18) 
where is called the g-factor and g β is called the magneton (and should be clearly 
distinguished from the state β  in Eq. (4)). The values of  and g β  differ from one 
elementary particle to another, and are obtained empirically. For the electron  
and , while for the proton  and 

 (the values for other elementary particles and heavier 
nuclei are tabulated in many books). 

2.0023eg =
10/ 2 8.793 10 /e ee m C kgβ = − = − × 5.5854pg =

7/ 2 4.789 10 /p pe m C kgβ = = ×

Now, assume that a spin-1/2 particle, such as the electron or proton, is subject to a 
constant magnetic field of amplitude 0B  that lies along the z axis, 0(0,0, )B B=

G
. The 

Zeeman Hamiltonian in this case is given by: 
  (19) 0 0

ˆˆ
zH B Sγ ω= − = ˆ

zS

0where 0 Bω γ= −  is called the Larmor (angular) frequency. Since this Hamiltonian is 

proportional to , it has the same eigenfunctions as . Thus, the eigenstates of ( i.e. 
the stationary states) are simply 

ˆ
zS ˆ

zS Ĥ
α and β , and the energy levels are 0 / 2ω=  and 

0 / 2ω−= , respectively: 
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0
0

0
0

ˆˆ
2

ˆˆ
2

z

z

H S

H S

ωα ω α α

ωβ ω β β

= =

= = −

=

=
 (20) 

In conclusion, a constant magnetic field splits the, otherwise degenerate, energy levels of 
a spin-1/2 particle, and the energy gap between them is given by 0 0Bω γ= −= = .  

 
Figure 1:Schematic view of NMR spectrometer 

Modern commercial magnetic resonance spectrometers are often classified according to 
the maximal strength of the magnetic field that they can produce. The main point is that 
the Larmor frequency increases with the amplitude of the magnetic field, and therefore 
leads to a more accurate (better resolved) determination of the corresponding 
spectroscopic transitions. The strongest fields in commercially available NMR (nuclear 
magnetic resonance) machines are at around (21T 1T Tesla JsC m 2− −= =  is the SI unit for 
measuring the strength of a magnetic field).  This implies that the transition frequency 
between the two spin states of a free proton is given by: 

 
7

0 0 80
0

5.5854 4.789 10 21 9 10 900
2 2 2 2

p p pB g B
Hz MHz

γ βων
π π π π

× × ×
= = = = × =�  

Such an NMR spectrometer will be often referred to as a “900MHz machine”. Low field 
NMR spectrometers are classified as leading to splits of around 200MHz and below.  It 
should be noted that those frequencies correspond to radio waves (the wavelength is 

 in the case of a 900MHz machine), and are smaller than those involved in 
electronic, vibrational and rotational transitions.  

30cm∼

The magnetogyric ratio of a free electron is about three orders of magnitude larger than 
that of the proton, which implies that the same magnetic field would produce a much 
bigger splitting. Commercially available ESR (electron spin resonance, also known as 
EPR, for electron paramagnetic resonance), come with fields of around 1 , which 
corresponds to the following transition frequency between the two spin levels of a free 
electron:  

T
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10

100 0 0
0

2.0023 8.793 10 1 3 10 3
2 2 2 2

e e eB g B Hz GHzω γ βν
π π π π

× × ×
= = = = × =�  

This is a higher frequency (the wavelength is ) and corresponds to microwave 
radiation.  

cm∼

 

 
Figure 2: The energy gap between the spin levels as a function of magnetic field strength (a), and the 

corresponding spectral line (b).  

 
Magnetic resonance spectroscopy and selection rules 
 
We have already seen that a strong and static magnetic field along the z axis is needed in 
order to split the spin energy levels. Magnetic resonance spectroscopy is based on 
applying a weak and explicitly time-dependent magnetic field which is polarized in a 
direction which is perpendicular to the z  axis. For example, consider such a 
monochromatic driving field along the x  axis, 1 sin( )B tω . The Zeeman Hamiltonian is 
now given by:  
  (21) 1 0 1

ˆ ˆ ˆˆ sin( ) sin( )z z x z xH B S B t S S tγ γ ω ω ω ω= − − = + Ŝ

1where 1 Bω γ= −  (sometimes referred to as Rabi’s Frequency). We see that in this case, 

 plays the role of the (magnetic) dipole moment operator, such that the selection rules 

are dictated by the following matrix element:

ˆ
xS

ˆ / 2xSα β = =  [see Eq. (13)].Thus, the 
transition between the energy levels split by the static field is allowed, and can be 
induced by a weaker monochromatic magnetic field, at resonance (i.e., when 0ω ω= ).    
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Shielding and chemical shifts 
 
From this point on we will focus on NMR, which is a more powerful and more widely 
utilized technique. At first sight NMR looks like nothing more than a very expensive way 
of detecting protons. However, as we will see below, NMR is such a powerful technique 
because of the great sensitivity of the Larmor frequency (and in more advanced 
applications other characteristics of the absorption line)  to the chemical environment of 
the proton.  
The discussion above referred to the rather ideal case of an isolated proton. However, 
NMR is usually applied to molecular samples where the protons are surrounded by 
electrons. The latter are charged particles, and subjecting them to an external magnetic 
field will make them move in a circular motion1. This circular motion corresponds to 
inducing electrical current, which in turn generates a local magnetic field2 This local 
magnetic field generally opposes the external magnetic field, such that the overall 
magnetic field felt by the proton is somewhat lower than the external field and is given 
by: 
 0(1 )B Bσ= −  (22) 
 Here 0Bσ−  is the local field and 0σ >  is called the shielding constant, which is 
usually much smaller than 1 ( 510σ −∼  in most organic compounds). The most important 
point is that the shielding coefficient is very sensitive to the environment of the proton. 
Thus, protons in different chemical environments are subject to different local magnetic 
fields and therefore absorb at different frequencies.   
In order to compare spectra taken with different spectrometers, that correspond to 
different strengths of the static magnetic field, one defines the chemical shift, which 
corresponds to the location of the line relative to the line of a standard (tetramethysilane 
(TMS), , which is relatively non-reactive, produces a strong line, and absorbs at 
a frequency which is lower than that of most molecules), divided by the frequency of the 
spectrometers: 

4 4(Si CH )

 6

0

10H TMS
H

ν νδ
ν

⎛ ⎞−
= ×⎜ ⎟
⎝ ⎠

  . (23) 

The  factor is added so that the chemical shift is given in terms of parts-per-million 
(ppm).  

610

The value of σ reflects the electron density in the vicinity of the proton and increases 
with it. Thus, a large chemical shift is indicative of a chemical environment with a small 
electron density, and vice versa. 

                                                 
1 This phenomenon, where a magnetic field induces an electrical field, which in turn induces a current, is 
called electromagnetic induction. For example, it is the operating principle of the electric generator, 
where mechanical energy is converted into electrical one by rotating  a wire loop in a constant magnetic 
field.    
2 The operating principle is opposite to that of the electric generator, and is similar to that of the electric 
motor, where electrical energy is converted into mechanical motion.  
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Figure 3: NMR spectrum of  (note that the chemical shift increases from left to right). 3CH I

Example 1: The NMR spectrum of consists of a single line 
at 

4 3 2 2, , ,CH CH Cl CH Cl CHCl3

0.23,3.05,5.33,7.26δ = , respectively. The fact that we see a single line in a molecule 
that has more than one proton is due to the fact that those protons are equivalent that is 
they feel the same chemical environment. The chemical shift increases as we substitute 
the Hydrogen atoms by Chlorine atoms. This is explained by the electronegativity of 
Chlorine, which implies that it can pull electrons from the close vicinity of the protons 
(see discussion above).  
 
Example 2: The NMR spectrum of a molecule with the molecular formula  has 
two lines of the same height. This means that the six protons are separated into two 
groups with the same number of three equivalent protons in each (in order to explain the 
fact that the two lines are of the same height). This molecule has several isomers, and one 
of them, methyl acetate, , is consistent with the observed spectrum. We can 
also associate the peak with the larger chemical shift with the protons on the right-hand-
side methyl group, due to the closer proximity to the electronegative oxygen.    

3 6 2C H O

3CH COOCH3

                                                

 
A complete analysis of NMR spectra is much more involved and can supply far more 
information than may be suggested by the discussion above. For example, the lines that 
correspond to equivalent groups are often seen to be split into doublets, triplets, quartets, 
etc, which is due to spin-spin interactions. We leave this and other important phenomena 
that have to do with NMR to a more advanced course on this topic.3  
 

 
3 See, for example, Chapter 14 in “Physical Chemistry: A molecular approach”, by McQuarrie and Simon.   
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Figure 4: NMR spectrum of  3 3CH COOCH
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