
[image: image1.emf][image: image2.emf]

7-Octal and Hexadecimal Radix Representations.
While binary numbers reflect the actual internal representation used in most machines, they suffer from the disadvantage that numbers represented in base 2 tend to need more digits than numbers in other bases, (why?) and it is easy to make errors when writing them because of the long strings of 1’s and 0’s. The base 8, octal radix, and base 16, hexadecimal radix, are related to base 2. This is due to the three radices all being divisible by 2, the smallest one. We show below that converting among the three bases 2, 8, and 16 is trivial, and there are significant practical advantages to representing numbers in these bases.

Binary numbers may be considerably wider than their base 10 equivalents. As a notational convenience, we sometimes use larger bases than 2 that are even multiples of 2. Converting among bases 2, 8, or 16 is easier than converting to and from base 10. The values used for the base 8 digits are familiar to us as base 10 digits, but for base 16 (hexadecimal) we need six more digits than are used in base 10. The letters A, B, C, D, E, F or their lower-case equivalents are commonly used to represent the corresponding values (10, 11, 12, 13, 14, 15) in hexadecimal. The digits commonly used for bases 2, 8, 10, and 16 are summarized in Figure 2. In comparing the base 2 column with the base 8 and base 16 columns, we need three bits to represent each base 8 digit in binary, and we need four bits to represent each base 16 digit in binary. In general, n bits are needed to represent each digit in base 2n, in which n is an integer, so base 23 = 8 uses three bits and base 24 = 16 uses four bits.

In order to convert a base 2 number into a base 8 number, we partition the base 2 number into groups of three starting from the radix point, and pad the outermost groups with 0’s as needed to form triples. Then, we convert each triple to the octal equivalent. For conversion from base 2 to base 16, we use groups of four. Consider converting (10110)2 to base 8:
(10110)2 = (010)2 (110)2 = (2)8 (6)8 = (26)8
Notice that the leftmost two bits are padded with a 0 on the left in order to create a full triplet.

Now consider converting (10110110)2 to base 16:
(10110110)2 = (1011)2 (0110)2 = (B)16 (6)16 = (B6)16
(Note that ‘B’ is a base 16 digit corresponding to 1110. B is not a variable.)
The conversion methods can be used to convert a number from any base to any other base, but it may not be very intuitive to convert something like (513.03)6 to base 7. As an aid in performing an unnatural conversion, we can convert to the more familiar base 10 form as an intermediate step, and then continue the conversion from base 10 to the target base.
8-Unsigned Integer Representation.

Now that you are familiar with different number systems, let us turn our attention to how integers (numbers with no fractional part) are represented internally in computers. Of course, we know that the binary number system is used internally. Still, there are a number of other details that need to be sorted out before we have a workable internal number representation scheme.

The most natural way to represent unsigned (i.e., nonnegative) numbers is to use the equivalent binary representation. A binary number with n bits can represent 2n different values, and the range of the numbers is from 0 to 2n-1. Padding of 0s on the left can be used to make the binary conversion of a decimal number equal exactly N bits. For example, to represent 16D we need = 5 bits. Therefore, 16D = 10000B. However, this can be extended to a byte (i.e., N=8) as

00010000B
A problem arises if the number of bits required to represent an integer in binary is more than the N bits we have. Clearly, such numbers are outside the range of numbers that can be represented using N bits. Recall that using N bits, we can represent any integer X such that

9-Signed number.
One common way of handling negative numbers is to add one bit to the binary code of the number called sign bit. This is the frequently the most left bit, with a 0 indicating a positive number and a 1 a negative number.

There are three widely used techniques for representing both positive and negative numbers:-

1. sign and magnitude.

2. 1’s complement.

3. 2’s complement.
In sign and magnitude method the first bit from the left used for a sign and the remaining for the magnitude of the number. For example, the numbers between -127 and +127 could be represented in 8 bits , the first being used for a sign and the remaining 7 for the magnitude.

If there are the following bits (b7 b6 b5 b4 b3 b2 b1 b0) where b7 is the sign bit, then the value of the number is given by:

(1-2b7) (b6×26 + b5×25 + b4×24 + b3×23 + b2×22 + b1×21 + b0×20)

The positive values have the same representation systems, while variation occur in the representation of negative values.

In the 1’s complement representation system, negative values are obtained by complementing each bit of the representation of the corresponding positive value.

For example, the value -3 is obtained by bit complementing 0011 to obtain 1100. Finally, in 2’ complement system, a negative value is obtained by adding 1 to the 1’ complement of value.

EX: Represent the number +9 using the three methods

+9
0,1001

signed – magnitude

0,1001

1`s complement

0,1001

2`s complement

EX: what is the 1`s complement, 2`s complement and sighed – magnitude of -9.

-9

1,1001

signed – magnitude

1,0110

1`s complement

1,0111

2`s complement

Note:- Special case in 2’s complement representation is be that whenever a signed number has a 1 in the sign bit and a 0 for all the magnitude bits, its decimal equivalent is (-2N-1) where N is the total number of bits including sign bit. For example:

 1,0000 -25-1 = -24 = -16

The advantage of the sign 2’s complement representation over the 1’s complement and sign/magnitude is that it contains only one type of zero while the other representations have both a +0 and -0. And the other is that addition of 2’ complement numbers can be performed without regard for the sign.

Lec. (3)

Computer Organization

1st stage

College of Computer Technology

Figure 2 Values for digits in the binary, octal, decimal, and hexadecimal number systems.

�

�

0 ≤ X ≤ 2n-1.

عادي

شامل

الأبعد

PAGE

