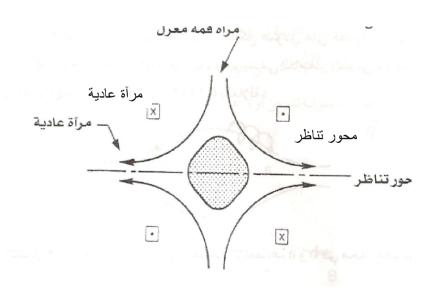
إذا كانت قيمة المجال \overrightarrow{B} في مراة احتواء للبلازما تتغير كتابع جيبي (sinusoidal) للزمن ، فإن سرعات الجزيئات v_{\perp} سوف تصبح مهتزة ، ولا تحدث في نهاية العملية زيادة في الطاقة . ولكن إذا اصطدمت الجزيئات فيما بينها ، فإن μ لاتتغير وبالتالي تسخن البلازما .


في الحقيقة تصطدم الجزيئة عند طور الانضغاط وتفقد جزء من طاقتها لـ v_{\parallel} وهذا لايمكن تعويضه في طور التوسع .

(b) التسخين الناتج عن دوران السيكلترونى:

لنفرض إن المجال \overrightarrow{B} يهتز بتواتر ω_c عندئذ سيدور المجال الكهربائي الناتج بطور بعض الجزيئات وسوف يسرع حركة لارمور لهذه الجزيئات باستمرار . وبالتالي يصبح الشرط $\omega < \infty < \omega$ غير محقق ، و μ لاتحافظ على ثبوتيتها وبالتالي فإن البلازما يمكن ان تسخن .

(c) القمم المغناطيسية:

إذا مررنا تيار في احد ملفات جملة مرآتية مغناطيسية باتجاه معاكس نحصل على قمة مغناطيسية (الشكل (2-11))

الشكل (2-11) اختزان البلازما في مجال قمة احتواء مغناطيسية

هذا الشكل يحوي بالإضافة إلى المرايا العادية ، مرآة قمة مغزل تغطي زاوية سمتية 360° . إن بلازما مختزنة في مجال قمة احتواء مغناطيسية تملك خواص استقرار أفضل من اختزانها في جملة مرايا عادية . لسوء الحظ ، فإن الفقدان المخروط (أي بعدم اعتبار الجزيئات) اكبر بنتيجة منطقة الفقدان الإضافية ، وبسبب عدم كون حركة الجسيمة مكظومة حراريا . وبما إن المجال $\overline{\mathbf{B}}$ يختفي في مركز التناظر فإن \mathbf{w}_{c} تكون مساوية للصفر هناك و $\mathbf{m}_{\mathrm{e}} = \mathbf{m}_{\mathrm{e}} = \mathbf{m}_{\mathrm{e}} = \mathbf{m}_{\mathrm{e}}$ غير محفوظ ، امانصف قطر لارمور الموضعي حول المركز اكبر من الجهاز ذاته . وبسبب ذلك ، فإن ثابت $\mathbf{\mu}$ لا يضمن بقاء الجسيمات خارج مخروط الضياع بعد عبورها

 $p_{\theta}=$) المنطقة غير المكظومة ولحسن الحظ ، يوجد في هذه الحالة متغير هو العزم الزاوي القانوني $mrv_{\theta}-erA_{\theta}$ وهو يكفل وجود عدد من الجسيمات تقفز بشكل غير محدد الى ان يحصل التصادم فيما بينها .