
1

SEARCH TECHNIQES

2

Defining the Problem

• Much of the point of the AI research was to understand

“how” to solve the problem, not just to get a solution.

• How do you define the problem with enough precision so

that you can figure out how to represent it?

- we are interested in how to represent our problem so

that we can solve it using search techniques,

- and which search techniques to use.

- we explore one of the primary problem representations,

the state-space approach.

3

State Space

• The combination of the initial state and the set of

operators make up the state space of the problem.

• The sequence of states produced by the valid

application of operators from the initial state is

called the path in the state space.

• In many search problems, we are not only

interested in reaching a goal state, we would like

to reach it with the lowest possible cost (or the

maximum profit).

4

• An algorithm is optimal if it will find the best solution from

among several possible solutions.

• A strategy is complete if it guarantees that it will find a

solution if one exists.

The complexity of the algorithm,

-time complexity (how long it takes to find a solution)

-space complexity (how much memory it requires),

is a major practical consideration.

5

The Blind Techniques:
If we have a systematic search strategy that does not use

information about the problem to help direct the search, it is called

brute-force, uninformed, or blind search.

• The Breadth-First Search

• The Depth-First Search

• Improving Depth-First Search

Heuristic search methods
Search algorithms which use information about the problem, such as

the cost or distance to the goal state, are called heuristic, informed,

or directed search.

• Best-First Search

• Hill climbing Technique

• Greedy Search

• A* Search

6

The Breadth-First Search

The breadth-first search algorithm searches a state-space by
constructing a hierarchical tree structure consisting of a set of nodes
and links. The algorithm defines a way to move through the tree
structure, examining the values at nodes in a controlled and
systematic way so that we can find a node which offers a solution to
the problem we have represented using the tree-structure.

• 1. create a queue and add the first search node to it

• 2. Loop:

– If the queue is empty; quit.

– Remove the first Search Node from the queue.

– If the Search Node contains the goal state, then exit with the
Search Node as the solution.

– For each child of the current Search Node: Add the new state to
the back of the queue.

7

The breadth-first algorithm

The breadth-first algorithm spreads out in a uniform
manner from the start node. From the start, it looks at
each node one edge away. Then it moves out from those
nodes to all nodes two edges away from the Start. This
continues until either the goal node is found or the entire
tree is searched, Breadth-first search is complete; it will
find a solution if one exists. But it is neither optimal in
the general case (it won’t find the best solution, just the
first one that matches the goal state). nor does it have
good time or space complexity (it grows exponentially in
time and memory consumption).

8

The Depth-First Technique

• Depth-First Search
Depth-first search is another way to systematically traverse a tree
structure to find a goal or solution node. Instead of completely
searching each level of the tree before going deeper, the depth-first
algorithm follows a single branch of the tree down as many levels as
possible until we either reach a solution or a dead end. The
algorithm follows:

• 1. create a queue and add the first search node to it

• 2. Loop:

– If the queue is empty; quit.

– Remove the first Search Node from the queue.

– If the Search Node contains the goal state, then exit with the
Search Node as the solution.

– For each child of the current Search Node: Add the new state to
the front of the queue.

9

The Depth-First Technique

• Notice that this algorithm is identical to the breadth-first
search with the exception of step 2d. The depth-first
algorithm searches from the start or root node all the
way down to a leaf node. If it does not find the goal
node, it backtracks up the tree and searches down the
next untested path until it reaches the next leaf. If you
imagine a large tree, the depth-first algorithm may spend
a large amount of time searching the paths on the lower
left when the answer is really in the lower right. But since
depth-first search is a brute-force method, it will blindly
follow this search pattern until it comes across a node
containing the goal state, or it searches the entire tree
Depth first search has lower memory requirements than
breadth first search, but it is neither complete nor
optimal.

10

11

Improving Depth-First Search

• Improving Depth-First Search

One easy way to get the best

characteristics of the depth-first search

algorithm along with the advantages of the

breadth-first search is to use a technique

called iterative-deepening search. In this

approach.

12

Improving Depth-First Search

13

Improving Depth-First Search

• This algorithm, like standard breadth-first
search, is a complete search and will find an
optimal solution, but it has much lower memory
requirements, Like the depth-first algorithm-
Although we are retracing ground when we
increase our depth of search, this approach is
still more efficient than pure breadth-fast or pure
unlimited depth-first search for large search
spaces .

14

Heuristic search methods

• Heuristic search methods are characterized by
this sense that we have limited time and space
in which to find an answer to complex problems
and so we are willing to accept a good solution

• Heuristic search methods use objective
functions called (surprise!) heuristic functions to
try to gauge the value of a particular node in the
search tree and to estimate the value of any of
the paths from the node. In the next sections we
describe four types of heuristic search
algorithms.

15

Generate and Test

• Generate and Test

• The generate and test algorithm is the most

basic heuristic search function. The steps are:

1. Generate a possible solution, either a new
state or a path through the problem space.
2. Test to see if the new state or path is a
solution by comparing it to a set of goal states.
3. if a solution has been found, return success:
else return to step1.

16

Generate and Test

• This is a depth-first search procedure which performs an
exhaustive search of the state space. If a solution is
possible, the generate and test algorithm will find it,
However, it may take an extremely long time. For small
problems. generate and test can be an effective
algorithm, but for large problems, the undirected search
strategy leads to lengthy run times and is impractical.
The major weakness of generate and test is that we get
no feedback on which direction to search. We can
greatly improve this algorithm by providing feedback
through the use of heuristic functions.

17

Hill climbing Technique

• Hill climbing is an improved generate-and-
test algorithm, where feedback from the
tests are used to help direct the generation
(and evaluation) of new candidate states,
When a node state is evaluated by the
goal test function, a measure or estimate
of the distance to the goal state is also
computed. One problem with hill climbing
search in general is that the algorithm can
get caught in local minima or maxima.

18

Best-First Search

• Best-first search is a systematic control strategy

combining the strengths of breadth-first and

depth-first search into one algorithm. The main

difference between best-first search and the

blind search techniques is that we make use of

an evaluation or heuristic function to order on

the queue. In this way we choose the

SearchNode that appears to be best, before any

others, regardless of their position in the tree or

graph .

19

20

Greedy Search

• Greedy search is a best-first strategy where we try to
minimize estimated cost to reach the goal (certainly an
intuitive approach!). Since we are greedy always expand
the node that is estimated to be closest to the goal state,
Unfortunately the exact cost of reaching the goal state
usually can’t be computed, but we can estimate it by
using a cost estimate or heuristic function h(). When we
are examining node n, then h() gives us the estimated
cost of the cheapest path from n’s state to the goal state.
Of course the better an estimate h() gives, the better and
faster we will find a solution to our problem Greedy
search has similar behavior to depth-first search. Its
advantages are delivered via the use of a quality
heuristic function to direct the search.

21

A* Search

• .
A* Search One of the most famous search algorithms
used in Al is the A* search algorithm, which combines
the greedy search algorithm for efficiency with the
uniform cost search for optimality and completeness. In
A* the evaluation function is computed by the two
heuristic measures; the h(n) cost estimate of traversing
from n to the goal state g(n) which is the known path
cost from the start node to n into a function called f(n)
This combination of strategies turns out to provide A*
with both completeness and optimality

22

A* search

23

Means-Ends Analysis

• Means-ends analysis is a process for
problem solving which is based on
detecting differences between states and
then trying to reduce those differences.
First used in the General Problem Solver .
means-ends analysis uses both forward
and backward reasoning and a recursive
algorithm to systematically minimize the
differences between the initial and goal
states.

24

Means-Ends Analysis

• Means-Ends analysis (Current-State, Goal-State)
1. Compare the current-state to the goal-state. If states are identical
then return success.
2. Select the most important difference and reduce it by performing
the following steps until success or failure
a. Select an operator that is applicable to the current difference. If
there are no operators which can be applied, then return failure.
b. Attempt to apply the operator to the current state by generating
two temporary states, one where the operator’s preconditions are
true (prestate). and one that would be the result if the operator were
applied to the current state (poststate).
c. Divide the problem into two parts, a FIRST part, from the current-
state to the prestate, and a LAST part, from the poststate to the goal
state. Call means-ends analysis to solve both pieces. If both are
true, then return success, with the solution consisting of the FIRST
part, the selected operator, and the LAST part.

