Sympatholytic drug (adrenergic antagonist) :

α – receptor blocker:

blockade of α -R \rightarrow \downarrow sympathetic tone on BV \rightarrow \downarrow prepheral resistance \rightarrow \uparrow BP HR

1) non selective α-blockers:

* Phenoxybenzamine

-produce covalent bond with α -1 post synaptic and α -2 pre-synaptic R

Effect:

CVS:

- increase HR
- used in treatment of pheochromocytoma (catecholamine-secreting tumor in adrenal medulla)
-in pre-operation to prevent hypertensive crises

-<u>Raynauds</u> diseases

SE:

postural hypotension
nasal congestion
tachycardia & arrhythmia
male sexual dysfunction

*Phentolamine:

-used to terminate local anesthesia
-cause postural hypotension
-cause tachycardia by blocking α-2 of cardiac sympathetic nerve.

2) selective α-blocker

Include;

Prazosin, Terazosin, Doxazosin & Tamsulosin

- copetative blocker of α -1 R

-used in treatment of hypertension (because relax sm of artery and veins -treatment of benign prostatic hyperplasia

-used in combination with diuretics (return Na & H2O)

-Doxazosin longest duration, excreted by intestine

SE:

-nasal congestion -orthostatic hypotension

β - adrenergic blocker

-these drug are selective or non selective antagonist

-they differ in intrinsic sympathomimetic activity (ISA)(in CNS effects) & in kinetics.

- β - blocker not induce postural hypotension (although it lower BP) because α -R stay active.

-these drug used in treatment of angina , C. arrhythmia , myocardial infarction (MI) , glaucoma , prophylaxis of migraine headache and in hyperthyroidism.

1) β- blocker without ISA(pure antagonist) A- non-selective β- blocker:

* Propranolol(anderal) -prototype, given orally, iv

-(-ve inotropic & chronotropic effect. -depress AV & SA node Bradycardia & decrease CO and O2 demand decrease

- decrease BP so decrease blood flow then increase Na⁺ retention

- prevent β 2mediated vasodilatation

-blocking $\beta 2$ in lung leading to bronchial sm contraction

-decrease glycogenolysis

-decrease glucagons secretion

CI: Asthma and COPD

SE:

Insomnia, bradycardia, bronchospasm, sexual impairment, arrhythmia in sudden stop of drug.

DIA:

Cimetidine, furosemide, chlorpromazine, they interfere with its metabolism so with its antihypertensive effect.

Barbiturate, phenytoin, rifampin are enzyme inducer so decrease its effect

I:

-MI -Angina pectoris -hyperthyroidism -glaucoma -migraine -hypertension

*Timolol and Nadolol

- they potent than propranolol

-Timolol orally and ophthalmic, Nadolol given orally

- Timolol reduce aqueous humor in eye

-used in treatment of open angle glaucoma

-in systemic treatment of hypertension.

B- Selective β- blocker:

Atenolol (tenormine), Metoprolol , Esmolol , Betaxolol

- all are cardio selective β 1 blockers

-block $\beta 1$ R at dose 50 time less than needs for blocking $\beta 2$ R

-Esmolol short acting , iv , used in acute arrhythmia during surgery Uses:

- hypertension are useful in :

*hypertensive patients with impaired pulmonary function *diabetic hypertensive patients who are receiving insuline or oral hypoglycemic agents.

-Ischemic heart diseases

2) β- blocker with ISA(partial agonist)

* selective :

Acebutolol

 $-\beta$ 1 selective blocker, partial agonist -used in hypertension and ventricular arrhythmia

*non selective :

Pindolol

-partial agonist

- both used in hypertension

-both drug decrease disturbances of lipid and carbohydrate metabolism

β- blocker with α1-blocking effect. Labetalol and carvedilol

-produce prepheral vasodilation so decrease BP

-used in treatment of emergency hypertension