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On The Elliptic Variational Inequality Of The First Kind For The Elasto-Plastic Torsion Problem
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Abstract 

      The elliptic variational inequality of the first kind for the " Elasto- Plastic torsion problem" is considered. This elliptic variational inequality is related to second order partial differential operator.The physical and mathematical interpretation and some properties of the solution are given.
الخلاصة

      لقد اعتبرنا المتباينة التغايرية الناقصية من النوع الاول لمسألة الطي، هذه المتباينة لها علاقة بالمؤثر التفاضلي الجزئي من الرتبة الثانية ، التفسير الرياضي والفيزيائي وبعض خواص الحل قد اعطيت . 

1. Introduction:  

        An important and very useful class of non- linear problems arising from mechanics, physics etc. consists of the so- called variational inequalities. In this paper we shall restrict our attention to the study of the existence, uniqueness, and properties of the solutions of elliptic variational inequality (EVI) of the first kind .
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In general we do not assume a (. , .) to be symmetric , since in some applications non-symmetric bilinear forms may occur naturally (Lions , 1967).
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1.2: Elliptic Variationd  Inequality of First kind ( EVI )
To find 
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 is a solution of the problem: 
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1.3: Existence and Uniqueness Results for EVI of First kind
1.3.1:  A Theorem of Existence and Uniqueness (Lions , 1967 ; Chipot et al., 1987). 


The problem  
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 has one and only one solution. 

Proof: 1- Uniqueness  
Let 
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Which implies 
[image: image44.wmf]1

u

= 
[image: image45.wmf]2

u

 , since 
[image: image46.wmf]a

>0

2- Existence: we will reduce the problem (p1) to a fixed point problem . By the Riesz representation theorem for Hilbert spaces there exist .
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Then the problem (
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This is equivalent to finding u such that: 
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Where 
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Thus 
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2- An Example of EVI of the first kind " The Elasto – plastic Torsion Problem"

2.1: Notations 
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2.2:The mathematical Interpretation of the problem 
Let 
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be a bounded domain of 
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with a smooth boundary 
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, we consider the following EVI of the first kind: 
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2.3: The physical Interpretation of the Problem
Let us consider on infinitely long cylindrical bar of cross-section 
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 where 
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 is simply connected. Assume that this bar is made up of an isotropic, elastic, perfectly plastic material whose plasticity yield is given by the von Mises criterion. ( Koiter , 1987 ; Duvaut et al., 197]).

Starting from a zero stress initial state, an increasing torsion moment is applied to the bar. The torsion is charcterised by c, which is defined as the torsion angle per unit length (William , 2004). Then for all c, it follows from the Haar- karman principle that the determination of the stress field is equivalent to the solution of the following variational problem:-
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This is a particular case of (2.2) with 
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3. Existence and Uniqueness Results of the " Elasto-plastic Torsion Problem" 

In order to apply theorem (1.3.1) , we only have to verify that k is a non- empty , closed, convex , subset of 
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2- To prove that 
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4. Regularity Properties and exact solutions
 4.1 Regularity results (Chipot et al., 1987)
4.1.1 Theorem
  Let u be a solution of (8) and 
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2- If 
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4.2 Exact solutions


In this section we are going to give an example of problems (8) for which exact solutions are known .

Example :- we take 
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={ x:0<x<1} and 
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Then the explicit form of (8) is
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The exact solution of (12) is given by
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5. An equivalent variational formulation (Lions , 1967)
If 
[image: image160.wmf]W

is a bounded domain of 
[image: image161.wmf]2

IR

with a smooth boundary 
[image: image162.wmf]G

and if 


[image: image163.wmf]ò

W

>

=

),

tan

0

(

)

(

)

(

ce

ins

for

c

dx

x

v

c

v

L


Then the solution of (8) is also a solution of 
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Since a( . , . ) is symmetric , (14) is also equivalent to
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