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Abstract

   
The main purpose of this paper is to introduce and study a new type of compact spaces which is r-compact space where  a topological space (X,() is said to be an r-compact space if every  regular open cover of X has a finite subfamily whose closures cover X . Several properties of an r-compact space are proved.
الخلاصة

الغرض الرئيسي من هذا البحث هو تقديم ودراسة نوع جديد من الفضاءات المرصوصة وهو الفضاء المرصوص-r  حيث أن الفضاء التبولوجي (X,() يسمى فضاء مرصوص- rإذا كان لكل غطاء مفتوح بانتظام للـ Xله عائلة جزئيه منتهية والتي يكون انغلاقها يغطي X . برهنا العديد من الخصائص للفضاء المرصوص r- .

1.Introduction

Compactness occupies a very important place in topology and so do some of its weaker and stronger forms, one of these forms is H-closednes where the theory of such spaces was introduced by Alexandroff and Urysohn in 1929.In 1969, nearly -compact spaces was introduced by M. K. Singal and Asha Aathur  . Another type of compact space which is       S-compact space was introduced in 1976 by  Travis Thompson. From time to time several other forms of compactness have been studied .In this work, we shall study a new weaker form of compact spaces , namely r-compact space.
Now,let (X ,() be a topological space ,and let A( X, we say that :

i) A is a regular open set in X if and only if,
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ii) A is a regular closed set in X if and only if,
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iii) A is a semi open set in X if and only if , there is an open set U such that U(A(
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,(Levine,1963).
     Some time we use X  to denote the topological space (X ,() and we will the symbol ( to indicate the end of the proof  . 

1.1 Remark:

i) The complement of every regular open(closed) set is a regular closed (open) set,(Dugundji , 1966).
ii) Every regular open set is an open set ,(Dugundji , 1966).
iii) Every open set is a semi open set,(Levine,1963).

iv) From (ii) and (iii), we can get that  every regular open set is a semi open set .
2.Preliminaries
    In this section , we  introduce and recall the basic definitions needed in this work. 
     First, we state the following definition:

2.1 Definition(Willard ,1970): A space X is said to be compact if and only if, every open cover of X has a finite sub cover of X.
    Now, we introduce the concept of r-compact in the following definition:

2.2 Definition: A space X is said to be r-compact if and only if, every regular open cover of X has a finite subfamily whose closures cover X .
     Next , we recall the following definition which we needed in the following sections.
2.3 Definition(Willard ,1970): A space X is said to be extremely disconnected if and only if , the closure of every open set in X is also open in X.
3.Relationship between r-compact and some types of compact spaces
     At once, we recall the definition of some types of compact spaces, as follows:
3.1 Definition(Willard ,1970): A space X is said to be:

i) quasi H- closed if and only if , every open cover of X has a finite subfamily whose closures cover X,(Cameron ,1978).

ii) nearly-compact if and only if, every open cover of X has a finite subfamily , the interiors of the closures of which cover X,(Herrington,1974).

iii) S-closed if and only if, every semi open cover of X has a finite subfamily whose closures cover X,(Thompson,1976).
 The above notations are related in the following diagram:
nearly -compact

                             3                         1                          6   

compact           4             quasi H-closed        7            r-compact

                                                            
                                 2                          8

S-closed

5

      It is clear that the implications 1,2,3 and 4 hold . Next, we prove 5,6,7and 8, respectively.

3.2 Theorem: Every compact space is an r-compact space .

Proof: Let X be a compact space and let { V(((((} be a regular open cover of X .Since X is a compact space .So, there exist 
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.Therefore, X is an r-compact space.(
3.3 Theorem: Every nearly-compact space is an r-compact space .

Proof: Let X be a nearly-compact space  and let { V(((((} be a regular open cover of        X .From (1.1)part(ii), we obtain that { V(((((} is an open cover of X. Since X is a     nearly- compact space . So, there exist 
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3.4Theorem: Every quasi H-closed space is an r-compact space .

Proof: Let X be a quasi H-closed space and let { V(((((} be a regular open cover of X . From (1.1)part(ii), we conclude that { V(((((} is an open cover of X. Since X is quasi     H-closed. So, there exist 
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3.5 Theorem: Every S-closed space is an r-compact space .

Proof: Let X be an S-closed space and let { V( ((((} be a regular open cover of X . From (1.1)part(iv), we can get  that   { V(((((} is a semi open cover of X. Since X is S-closed. So, there exist
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      Directly from the definition of an extremely disconnected space , we can prove the following theorem:

3.6 Theorem: In an extremely disconnected space X , the following are equivalent:

i) X is r-compact.
ii) X is nearly-compact.

iii) X is quasi H-closed.
4.Main Results
    In this section , we prove several properties of r-compact spaces. First , we prove the finite intersection property in the following theorem:
4.1 Theorem: If a space X is an r-compact and extremely disconnected space , then for every family    { V(((((}of regular closed sets in X satisfying 
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Proof: Let { V(((((} be a family of regular closed sets in X satisfying  
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.Then ,                {X- V(((((} is a   regular open cover of X. Since X is r-compact .Then, there exist a finite subfamily 
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, for each i=1,2,…,n and for each (i((.That is, 
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       Next, we study the heridatily property of r-compact .

4.2Theorem: Every regular closed subset of an r-compact is   r-compact.
Proof: Let X be an r-compact space , F be a regular closed subset of X and let  { V( ((((} be a regular open cover of X ,since F is a regular closed subset of X .Then, Fc is a regular open subset of X . Thus, { V(( Fc ((((}  is a regular open cover of X . Since X is an         r-compact space .So, there exist 
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       Now, to study the continuous property we need for the following lemma:

4.3Lemma: If f :X(Y is a continuous function of a space X into an extremely disconnected space Y , and if V is a regular open set in Y , then f -1(V)is a regular open set in X.
Proof: Since V is a regular open set in Y .Then, from (1.1) part(ii), we obtain that V is an open set in Y, since f is continuous. So, f -1(V)is an open set in X.  That is ,                             [f -1(V)]o= f -1(V) ...(*).  Now, since Y is an extremely disconnected space and                  since V is a regular open set in Y  .Thus,
[image: image48.wmf]V

V

V

o

   

=

=

 .That is , 
[image: image49.wmf]V

V

=

...(**). 
[image: image50.wmf])]

V

(

f

[

      

          

)]

V

(

[f

        

1

1

-

-

Í

because of f is continuous. So, 
[image: image51.wmf])]

V

(

f

[

      

          

)]

V

(

[f

        

1

1

-

o

o

-

Í

. From (**) , we can get that 
[image: image52.wmf]o

o

1

V)]

(

f

[

)]

V

(

f

[

        

1

-

=

-

. From (*) we conclude that, 
[image: image53.wmf]V)]

(

f

[

V)]

(

f

[

1

1

o

-

-

=

. Thus, 
[image: image54.wmf])

(V

f

      

          

)]

V

(

[f

        

1

1

-

o

-

Í

…….(1). In another hand, we have 
[image: image55.wmf])]

V

(

[f

       

)

(V

f

      

          

1

-

1

Í

-

. Then, 
[image: image56.wmf])]

V

(

[f

        

]

(V)

f

      

          

[

1

-

1

o

o

Í

-

.Thus, 
[image: image57.wmf])]

V

(

[f

        

]

(V)

f

      

          

[

1

-

1

o

Í

-

…..(2). Therefore, from (1) and (2) we obtain that  
[image: image58.wmf])]

V

(

[f

        

]

(V)

f

      

          

[

1

-

1

o

=

-

 . So, f -1(V) is a regular open set in X. ( 
4.4Theorem: If f :X(Y is a continuous function of an r-compact space X onto an extremely disconnected space Y , then Y is r-compact .
Proof: Let { V(((((} be a regular open cover of Y . Since f  is a continuous function and Y is an extremely disconnected space , then from  the above lemma we obtain that                  { f -1(V()((((} is a regular open cover of X. Since X is r-compact . So,                           there exists a finite subfamily f -1(
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      Directly , from (3.6) we can prove the following corollaries:

4.5 Corollary(1): If f :X(Y is a continuous function of an r-compact space  X onto an extremely disconnected space Y, then Y is a quasi H-closed (nearly compact) space.

4.6 Corollary(2): If f :X(Y is a continuous function of a compact ( or, nearly-compact, quasi H-closed, S-closed ) space X onto an extremely disconnected space Y, then Y is         an r-compact (quasi H-closed, nearly compact) space.
4.7 Corollary(3): If f :X(Y is a continuous function of an extremely disconnected and quasi H-closed (or, nearly compact) space X onto an extremely disconnected space Y  , then Y is an r-compact (quasi H-closed , nearly compact) space.

     Next, we study the converse continuous image of an r-compact space . So, we need the following lemma:
4.8Lemma: Let f :X(Y be an open continuous bijective function of an extremely disconnected space X into a space Y . If V is a regular open set in X , then f (V)is a regular open set in Y.

Proof: Since V is a regular open set in Y and since X is an extremely disconnected space. Then, 
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4.9Theorem: If f :X(Y is an open continuous bijective function of an extremely disconnected space X onto an  r-compact space Y , then X is r-compact .

Proof: Let { V(((((} be a regular open cover of X . From (4.8), we conclude that {f(V()((((} is a regular open cover of Y .Since Y is r-compact .Then , there exist               f (
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.Therefore, X is r-compact space. (
       From the above theorem and theorems (3.2),(3.3 ), (3.4),and(3.5) we can get the following corollary: 
4.10 Corollary(1): If f :X(Y is a homomorphism of  an extremely disconnected  space X onto a compact ( or, nearly-compact, quasi H-closed, S-closed ) space Y, then Y is an            r-compact space.
       Directly from theorems (4.4) and(4.9) we can prove the following corollary: 
4.11 Corollary(2): An r-compact property is a topological property under an extremely disconnected  spaces.
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