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Abstract

Finite element model is formulated to analyze the two- dimensional steady state seepage of water through AL- Adheem Dam and its foundation. The computer program TDFIELD is used to determine the head at nodes and the hydraulic gradients. The comparison between the obtained hydraulic gradient values and that recommended reveals that AL- Adheem dam is safe against seepage and there is no need to use any control devices for seepage.

الخلاصة
تم في هذا البحث تكوين موديل العناصر المحددة لتحليل جريان مستقر باتجاهين خلال السد العظيم وقاعدته. البرنامج الحاسوبي TDFIELD قد استخدم لإيجاد الشحنة الكلية عند العقد والانحدارات الهيدروليكية. وقد بينت المقارنة بين النتائج التي تم الحصول عليها للانحدارات الهيدروليكية وتلك المحددة بالمواصفات ان السد العظيم امن ولاحاجة لاستخدام أي وسائل للسيطرة على الجريان. 

1. Introduction

One of the most important problems that causes damage to earth dams is the seepage through and under them which occurs due to the difference in water level between the U/S and D/S sides of the dam.

Seepage in earth dams cannot be avoided but ordinarily does not harm if it is under control. Uncontrolled seepage may, however, cause erosion within the embankment or in the foundation, which may lead to piping.

The study of seepage through earth dams is one of the important analysis in dam design to calculate the quantity of losses from the reservoir, estimating the pore water pressure distribution, locating the position of the free surface which is used in the analysis of the dam stability against the shear failure. Finally, studying the hydraulic gradient gives a general idea about the potential piping.

When a dam is not safe against seepage there is a need to use control device(s) for seepage. The control devices for seepage are cut-off, dense core, and grout curtain. The use of one of them, any combination of two of them, or all of them with specified dimensions can be determined through an optimization study. In this research, the safety of AL- Adheem dam against seepage will be studied first. Then, if AL- Adheem dam is not safe against seepage, optimization study will be performed to determine the suitable control device(s) for seepage.
The seepage of water under a dam and through earth dam is governed by
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For homogenous and anisotropic soil, Eq. (1) becomes
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Where Kx and Ky are the coefficients of permeability and ( represents the piezometric head.

The numerical methods used to solve the unconfined seepage problems are the finite difference method, the finite element method, and the boundary element method (Bear and Veruijt, 1990). The finite element method is preferable because the major advantage of this method is the ease with which we can solve two- dimensional problems composed of several different materials and having irregular boundary (Segerlind, 1984).
The finite element method was used by many researchers to locate the free surface position and then to calculate the necessary parameters such as seepage quantity and pore water pressure. Among these researchers are Finn (Finn, 1967), Neuman and Witherspoon (Neuman and Witherspoon, 1970), Lacy and Prevost (Lacy and Prevost, 1987), Muhammad (Muhammad, 1991), Hung (Hung, 1996), Al- Qaisi (Al- Qaisi, 1999), Abo (Abo, 2001), Subuh (Subuh, 2002), and Saleh (Saleh, 2006).

Different kinds of packages were used by the researchers. However, in this research, the written computer program TDFIELD presented by Segerlind (Segerlind, 1984), is used. The use of this computer program make easy to follow the stages of solution.
In this research a two- dimensional steady finite element model with linear triangular elements is formulated to analyze the seepage of water through AL- Adheem dam and its foundation. Seepage studies of the dam embankment and foundation were conducted at the typical cross section shown in Figure (1).

The computer program TDFIELD is used to determine the nodal heads and the hydraulic gradients. The program is tested by considering several solved examples and comparing the output results with that for solved examples.

2. Finite Element Model

The derivation of permeability matrix can be found in any Finite Element text book. In this research, the computer program TDFIELD for a linear triangular element is used. Thus, to make the full benefit of this research and to make the following of the steps solution easy the derivation of the permeability matrix for a linear triangular element is mentioned in this paragraph.
In this research Galerkin’s method, which is on of the weighted residual methods, is used. Galerkin’s method requires
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Where [N] is the row vector containing the element shape functions. The second- derivative terms in (3) must be replaced by first order derivative terms because the interpolation function ((x, y) does not have continuous derivatives between the elements. The second- derivative terms in (3) can be replaced by applying the product rule for differentiation as follows:
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Substituting for [N]T(2(/  (X2 in (3) produces
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The first integral on the right- hand side of (5) can be replaced by an integral around the boundary using Green’s theorem. Applying of the theorem yields
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Where ( is the angle to the outward normal and ( is the element boundary. Substituting (6) into (5) gives the final relationship for the second- derivative term as  
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A similar set of operations produces

    
[image: image8.wmf][

]

[

]

[

]

dA

Y

Y

N

ky

d

sin

Y

N

ky

dA

Y

N

ky

T

A

T

2

2

T

A

¶

f

¶

¶

¶

-

G

q

¶

f

¶

=

¶

f

¶

ò

ò

ò

G

 ………..……….(8)

Substitution of (7) and (8) into (3) gives
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For the case under study there are two types of boundary conditions: over part of the boundary ( is specified and over the other part (( ( (n =0. Thus Eq.(9) becomes
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The interpolation function, ((x, y) is given by
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Substitution of (11) into (10) gives
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Define
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where [k(e)] is the element stiffness matrix. Equation (12) is written in a general form as
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The element stiffness matrix can be written more compactly by defining
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and
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The transpose of [B] is given by
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If we use (15), (16), and (17) it is easy to verify that
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The gradient vector is defined as
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Equation (18) represents a general permeability matrix. For a linear triangular element 

                             N = a + bx +cy
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where
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The derivatives of the shape functions are:
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Substituting the derivatives into (16) yields
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The two matrices [D] and [B], as given by (15) and (24) respectively, consist entirely of constants. Therefore
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3. Boundary Conditions

Referring to Figure (2) the boundary conditions for the region under study are as follows:

A. The upper boundary

The free surface (Phreatic line) represents the upper boundary. The pressure at any point along its surface is constant and equal to the atmospheric pressure. Thus, along this line the total head is equal to the elevation head.

B. The lower boundary

The impervious boundary is a streamline. At this boundary ((/ (n = 0 where n is the perpendicular direction to this line.
C. The left boundary

Along the boundary of the reservoir the pressure distribution may be taken as hydrostatic. Thus, the left boundary represents equipotential line.

D. The right boundary

This boundary consists of two parts. The upper part is the seepage face. The pressure along this line is atmospheric; therefore, the total head equals the elevation head. The lower part represents equipotential line as the left boundary. 

4. Steps of Solution

The general steps of solution are as follows

A. Assume the initial position of the free surface.

B. The saturated region below this line is divided into triangular elements.

C. The coordinates and element data are then supplied to the program TDFIELD with the boundary conditions. The head values (() on the free surface are assumed unknown.

D. The output results from operating TDFIELD program are ( values at each node and gradient values. The gradient values are constant within the element since linear triangular elements are used.

E. Compare the ( values obtained from step (D) for the free surface nodes with the elevation heads assumed in step (A). These results must met to a reasonable degree of accuracy. If these results are not met, adjust the position of the free surface.

F. Repeat the trials until the assumed elevation heads on the free surface met the ( values obtained from step (D).

G. Compare the gradient values obtained from step (D) with that recommended for a dam.

5. The Results and Conclusions

The program TDFIELD was applied to AL- Adheem Dam with U/S water level of 143m asl and D/S water level of 110m asl. The free surface position was adjusted many times. The final position is shown in Figure (2). The maximum hydraulic gradient values for the required regions are listed in Table (3).

The comparison between the maximum hydraulic gradient values given in Table (3) and that given in Table (2) reveals that AL- Adheem Dam is safe against seepage and there is no need to use any control devices of seepage.

Appendix 1: Graphs and Tables


Impervious Boundary

  Figure (1): Typical cross section of AL- Adheem Dam (Binnie and Partners, 1988)

(Elevations are in m asl)


Figure (2): Phreatic surface position of AL- Adheem Dam (Elevations are in m asl)

Table (1): Coefficients of permeability of each material in AL- Adheem Dam section (Binnie and Partners, 1988)  

	Material Type
	Kx (m/s)
	Ky (m/s)

	Rolled clay
	1.2 x 10-13
	1.2 x 10-13

	Rolled sandstone
	3 x 10-7
	3 x 10-7


Table (2): Preferred hydraulic gradients (Binnie and Partners, 1988)

	1
	Gradient across a sandstone core
	< 1.0

	2
	Gradient across a clay core
	< 3.0

	3
	Gradient at contact between a sandstone core and bedrock
	< 1.0

	4.
	Gradient at contact between a clay core and bedrock
	< 2.0


Table (3): Maximum hydraulic gradients

	1
	Gradient across a sandstone core
	0.64

	2
	Gradient across a clay core
	1.68

	3
	Gradient at contact between a sandstone core and bedrock
	0.34

	4.
	Gradient at contact between a clay core and bedrock
	1.15
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