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Abstract
In this paper we proved if we have two process, Z and Z′  such that Z′ is super martingale and Z is sub-martingale, we can find a measure Q equivalent to given measure P such that there exist an other process Z* lying between them (Z ≤Z*≤ Z′) and Z* is martingale with respect to measure Q and {Ft}.Also we proved under these condition there exist a corresponding between the set of all equivalent measure and the set of all convex functional.
الخلاصة
في هذا البحث إذا كان لدينا عمليتين Z,Z'    بحيث Z'   مارتنجل أعظم و Z  مارتنجل جزئي , نستطيع إن نجد قياس مكافئ Q إلى قياس معلوم P بحيث توجد عملية أخرى Z* تقع بينهما  Z ≤Z*≤ Z'  و Z* مارتنجل بالنسبة إلى القياس Q  و {Ft} وأيضا برهنا تحت هذه الشروط وجود تقابل بين مجموعة كل القياسات المكافئة ومجموعة كل الداليات المحدبة.
1.Introduction  
    A probability space is a triple ((,F,P) where ( is non-empty set, F is 
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-field and P is probability measure.[N, R.Ash ]. The function Z:(
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R is called random variables, if Z is measurable function.[ R.Ash]

A stochastic process is a collection of random variables Z={Z(t) :t 
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 I}           [ F]
A stochastic process Z={Z(t) : Ft : t 
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 I} is said adopted to the filtration { Ft}t
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I if Z(t) is Ft –measurable random variables [ R.Ash]

We say that the measure Q equivalent to P iff they have the same null set 

i.e.
Q(A)=0 ( P(A) =0 . 
A process Z′ is said to be super- martingale with respect to Q and adapted to
{ F t} if P{ Z′(t) | F s} ≤ Z′(s), and we say that Z is a sub-martingale if P{Z(t) | F s} ≥ Z(s), (t(s.
A process Z is said to be martingale if P{Z(t) | F s}=Z(t) , ( t ( s.

Let X be a set of all random variables on ((,F,P)with norm topology .

And X+={x(X: p(x
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0) =1 and p(x(0)=0}
If we have a, b are real numbers, we denote 

a+=( max (0,a))

a- =(- min (0,a))

We consider
t
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T, T ([0, T] be a filtration, and let 

 Z′ (t) = ( Z1′(t),…,Z′k(t))

 Z (t)  = (Z1(t),…, Z k(t))

are two K-dimensional positive process, which are adapted to { Ft}t(T, and

 E (Zk2(t)( ( , E(Z′k2(t)( ( (t(T and K=1,…..,k .
We assume that Z, Z′ and the filtration {Ft}t(T are right continuous .
2.Multi-Free lunch:-

we start this section by the following definition:-
Definition  (2.1),[F ]:
A simple trading strategy is a pair (H,H′ )of non-negative and non-decreasing k-dimensional processes such that  0≤t0≤…≤tN=T for which (H(t,w),
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¢

(t,w)) is constant over  [tn-1,tn)    (  n=1,…,N.
We assume:

(1) (H,
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¢

) is a dapted to { Ft}t(T  , and

(2) E((Hk Z′k)2(t))< ∞  ,   E((
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H

¢

Zk)2(t))< ∞   ( t(T  and K=1,2,…,k
(3) Z1(t)= Z′1 (t)=1 , ( t(T.

Definition (2.2),[R.C ]:

A simple strategy (H,
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¢

) is self-financing if 
                ( n=1,…, N we have:

                     (H (tn)-H (tn-1)) Z (tn) ≤ ((
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¢

(tn) - 
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¢

(tn-1)) 
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(tn)

The set of all self-financing simple strategy is denoted by (.
Let M={x(X: (H-
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¢

)+(T). 
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(T)- (H-
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)-(T).Z (T) ≥ x for some (H,
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)((}

And (:M(R defined by:           

 ((x)=inf{ 
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a

{Hα(0)Z(0)-
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H

¢

(0)Z(0)}  

where (H, 
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)((, (Hα-
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H
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)+(T). Z′ (T)- (H-
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)-(T).Z(T) ≥xα  and  xα(x 
Definition (2.3),[J,W]:


Let ((,F, P) be a probability space. A multi-free lunch is a net (x(, m() in X(M such that:
(1) x((x*(X+.

(2) ( a net  (H(,
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H

¢

)((  such that  (H(-
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H

¢

)(T)≥x(  ( ( 

       and (H-
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)+(T) Z′ (T)- (H-
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)-(T)Z(T)(X+.

(3) ((m()=inf {{(H((0)Z(0)-
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H

¢

(0) Z′ (0)} ≤ 0.

Proposition (2.4):

Let ((,F,P) be a probability space, then M is convex cone and ( is convex functional.    
Proof:

Let x,y(M 
                   ( (H-
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)+(T) Z′ (T)- (H-
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)- (T)Z(T)≥ x     for some (H,
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                   ( (J-
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)+(T) Z′ (T)- (J-
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)- (T)Z(T)≥y           for some  (J,
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By additive 

[(H-
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) +(T) + (J-
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)+(T)] Z′ (T)- [(H-
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)- (T) + (J-
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)- (T)]Z(T) ≥ x+y

[max {0,(H-
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)(T)}+max{0,(J-
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)(T)}] Z′ (T)-[(-min{0,(H-
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)}+(-min{0,(J-
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)(T)})]Z(T) ≥ x+y

Then  [max {0,(H-
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)(T)+ (J-
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)}] Z′ (T)- [(-min {0, (H-
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) + (J-
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) (T))] Z (T) ≥x+y

and  ((H-
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) (T) + (J-
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))+ Z′ (T)-((H-
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) +(J-
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))- (T)Z(T)≥x+y

also  ((H+J)-(
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))+(T) Z′ (T)- ((H+J)-(
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therefore  ((-
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where  (=H+J  ,  
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Thus  x+y(M.

Let (>0, x(M 
 Then there exist (H,
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)((   such that (H-
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)+(T) Z′ (T)- (H-
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)- (T)Z(T)≥ x

([(H-
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)+(T) Z′ (T)- (H-
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)- (T)Z(T)]= ((H-
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)+(T) Z′ (T)-( (H-
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                                                             =( max {0, H-
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} Z′ (T) -( (-min {0, H-
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}Z(T)

                                                             =max {0, (H-(
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} Z′ (T) - (-min {0, (H-(
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                                                             = ((H-(
[image: image72.wmf]H

¢

)+(T) Z′ (T)- ((H-(
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Since ((H,(
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then  ([(H-
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Also  ((H-
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)+(T) Z′ (T)- ((H-
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)- (T)Z(T) ≥(x.

    therefore  (x(M

Thus M is convex cone.
Now, to prove  ( is convex functional.

Let x, y(M
Then  (  (H,
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)(( ,  ( (J, 
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)((   such that (H-
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)- (T)Z(T)≥ x  

                                                                   (J-
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)+(T) Z′ (T)- (J-
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)- (T)Z(T)≥y   
    ((x)=inf {
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{(H((0)Z(0)-
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    ((y)=inf{
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{(J((0)Z(0)-
[image: image90.wmf]α

J

¢

(0) Z′ (0))}}

then  [(H-
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then  ((H+J)-(
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then  ((x+y)= inf{
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           = inf{
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           = inf{
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          =((x) +((y).

Let  0≤(≤1,  let x(M.

(x ( ((H-
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(x+(1-()y(((H-
[image: image115.wmf]H

¢

)+(T) Z′ (T)- ((H-
[image: image116.wmf]H

¢

)- (T)Z(T)+(1-()(J-
[image: image117.wmf]J

¢

)+(T) Z′ (T)-(1-() (J-
[image: image118.wmf]J

¢

)- (T)Z(T)

                 ( [( (H-
[image: image119.wmf]H

¢

)++((J-
[image: image120.wmf]J

¢

)+](T) Z′ (T)-[(1-()((H-
[image: image121.wmf]H

¢

)--(J-
[image: image122.wmf]J

¢

)-](T)Z(T)

                 ( (((H+J)-(
[image: image123.wmf]H

¢

+
[image: image124.wmf]J

¢

))+(T) Z′ (T)-(1-()(( H+J)-(
[image: image125.wmf]H

¢

+
[image: image126.wmf]J

¢

))-(T)Z(T).
Then  (((x+(1-()y)= inf{
[image: image127.wmf]Lim

a

{( (H+J)((0)Z(0)- (1-() (
[image: image128.wmf]α

)

J

H

¢

+

¢

(0) Z′ (0)}}
                 ( inf{
[image: image129.wmf]Lim

a

 {(((H( +J()(0)Z(0)- (1-() ( 
[image: image130.wmf]H

¢

(+
[image: image131.wmf]J

¢

()(0) Z′ (0))}}

                 ( inf{
[image: image132.wmf]Lim

a

 {((H((0)Z(0) +(J((0)Z(0)- (1-()(
[image: image133.wmf])

0

(

)

1

(

)

0

(

)

0

(

a

a

l

J

Z

H

¢

-

+

¢

¢
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3. Main Results

In this section we start by the following theorem:

Theorem (3.1):


Let ((,F,P) be a probability space , then (M,() is a non-multi free lunch if there exist a 
Probability measure Q equivalent to P and a process Z* satisfying  Z′ ( Z*( Z such that Z′  is super- martingale and Z is sub-martingale.
Proof:

Let Q be a probability measure equivalent to P and let Z* with  Z′ ( Z*( Z, such that Z is super- martingale and Z′  sub- martingale with respect to Q and { F t}.
To prove (M,() is non-multi free lunch,
let m(M  
there exist  (H,
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since  Z′ ( Z*( Z   and  (H,
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Moreover  EQ[(H(tn)-H(tn-1))Z*(tn)-(
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By iteration
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This implies that, there is no-multi free-lunch.                                                               
The converse of above proposition is not true, see [ W]
Theorem (3.2):


Let ((,F,P) be a probability space. Let EQ be denote the expectation operator associated to the (super/ sub) martingale measure Q. Then there exists one-to-one correspondence between the set of such expectation operators and the set of convex functional  ( such that ((M=(.

Proof:

Let  ( be a convex functional such that ((M=(.
Let Q: F (R defined by

Q (B) = ((IB)   (  B(F               [B]
By positively of (,   Q is positive.

Suppose  Z0= Z′ 0 =1
Q (() = ((I() =1                              [B]
Since ( is continuous,  then by Riesz representation theorem, there exist random variables ((X such that:

((x)=E((x)   ,   for each  x(X.

Q(B)=E((IB)   for each  B(F   and  
[image: image178.wmf]dp

dQ
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It remains to show that, there exists a process Z* with Z′ ( Z*( Z such that  Z is a sub martingale and  Z′  is super martingale with respect to Q and {Ft}.
Suppose  
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Assume  there exist   t([0,T] and B(Ft  such that  P(B) > 0  and  
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Hence  Z′ (t) > Z*(t)     for each  t.

Hence  Z* lies between Z  and  Z′.

Moreover, we must have:

    EQ(
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    EQ(
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and           
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This implies  EQ(
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So  Z* is martingale with respect to Q and { Ft}
 Conversely,
 Let Q be a probability measure equivalent to P and Z′ ( Z*( Z such that  Z* is a martingale with respect o Q.
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Proposition (3.3):
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