Data compression forth stage 2011-2012

 Introduction
Compression is used just about everywhere. All the images you get on the web are compressed, typically in the JPEG or GIF formats, most modems use compression and several file systems automatically compress files when stored, and the rest of us do it by hand.
 we will use the generic term message for the objects we want to compress, which could be either files or messages. The task of compression consists of two components, an encoding algorithm that takes a message and generates a “compressed” representation (hopefully with fewer bits), and a decoding algorithm that reconstructs the original message or some approx​imation of it from the compressed representation. These two components are typically intricately tied together since they both have to understand the shared compressed representation.

We distinguish between lossless algorithms, which can reconstruct the original message exactly from the compressed message, and lossy algorithms, which can only reconstruct an approximation of the original message. Lossless algorithms are typically used for text, and lossy for images and sound where a little bit of loss in resolution is often undetectable, or at least acceptable. Lossy is used in an abstract sense, however, and does not mean random lost pixels, but instead means loss of a quantity such as a frequency component, or perhaps loss of noise. For example, one might think that lossy text compression would be unacceptable because they are imagining missing or switched characters. Consider instead a system that reworded sentences into a more standard form, or replaced words with synonyms so that the ﬁle can be better compressed. Technically the compression would be lossy since the text has changed, but the “meaning” and clarity of the message might be fully maintained, or even improved.
Because one can’t hope to compress everything, all compression algorithms must assume that there is some bias on the input messages so that some inputs are more likely than others, i.e. that there is some unbalanced probability distribution over the possible messages. Most compression algorithms base this “bias” on the structure of the messages – i.e., an assumption that repeated characters are more likely than random characters, or that large white patches occur in “typical” images. Compression is therefore all about probability.

When discussing compression algorithms it is important to make a distinction between two components: the model and the coder. The model component somehow captures the probability distribution of the messages by knowing or discovering something about the structure of the input. The coder component then takes advantage of the probability biases generated in the model to generate codes. It does this by effectively lengthening low probability messages and shortening high-probability messages. A model, for example, might have a generic “understanding” of human faces knowing that some “faces” are more likely than others. The coder would then be able to send shorter messages for objects that look like faces. This could work well for compressing teleconference calls.

Another question about compression algorithms is how does one judge the quality of one ver​sus another. In the case of lossless compression there are several criteria I can think of, the time to compress, the time to reconstruct, the size of the compressed messages, and the generality. In the case of lossy compression the judgement is further complicated since we also have to worry about how good the lossy approx​imation is. There are typically tradeoffs between the amount of compression, the runtime, and the quality of the reconstruction.
 Entropy
Shannon borrowed the definition of entropy from statistical physics to capture the notion of how much information is contained in a and their probabilities. For a set of possible messages, Shannon defined entropy as,

[image: image1.wmf]å

Î

=

S

s

s

p

s

p

S

H

)

(

1

log

)

(

)

(

2

. (1)
Where p(s) is the probability of message s. The definition of Entropy is very similar to that in statistical physics- in physics S is the set of possible states a system can be in and p(s) is the probability the system is in state s. We might remember that the second law of thermodynamics basically says that the entropy of a system and its surroundings can only increase.

Getting back to messages, if we consider the individual messages
[image: image2.wmf]S

s

Î

, Shannon defined the notion of the self information of a message as

[image: image3.wmf])

(

1

log

)

(

2

s

p

s

i

=

. (2)
This self information represents the number of bits of information contained in it and, roughly speaking, the number of bits we should use to send that message. The equation says that messages with higher probability will contain less information.

The entropy is simply a weighted average of the information of each message, and therefore the average number of bits of information in the set of messages. Larger entropies represent more information.

Here are some examples of entropies for different probability distributions over five messages.

[image: image4.wmf]25

.

2

75

.

0

5

.

1

8

log

125

.

0

2

4

log

25

.

0

3

}

125

.

0

,

125

.

0

,

25

.

0

,

25

.

0

,

25

.

0

{

)

(

2

2

=

+

=

´

´

+

´

´

=

=

H

S

p

[image: image5.wmf]3

.

1

1

3

.

0

16

log

625

.

0

4

3

4

log

75

.

0

}

625

.

0

,

625

.

0

,

625

.

0

,

625

.

0

,

75

.

0

{

)

(

2

2

=

+

=

´

´

+

´

=

=

H

s

p

_1285870573.unknown

_1285870575.unknown

_1285870576.unknown

_1285870574.unknown

_1285870572.unknown

