[image: image5.emf]
[image: image6.emf]
4.2 Measuring Execution Time

Rather than estimating execution time of a given program, one might simply measure how long it takes to execute. Typically we use the term wall-clock time to mean the elapsed time for execution. However, this may include components other than the workload under examination such as time to load the program, time spent waiting for access to resources such as storage devices and so on. Depending on what we want to get from the exercise, we might include or exclude these components. Time is then one of:
Wall-clock Time Also known as execution time or response time, this is the total time required to execute a program, including all the potential overheads.
Processor Time Unlike wall-clock time which includes overheads, processor time is the total computational time spent during execution i.e., without overheads. That is, processor time is the amount of time the program spends having instructions executed by the processor.

System Time The amount of time spent executing operating system or library code on behalf of the program under examination. This might include calls to functions that load data from a storage device for example.

User Time In contrast with system time, user time measures how much time is spent executing the program itself.

Most UNIX systems include the time command which is able to report wallclock, system and user times for the execution of a given program. The resolution (or accuracy) of the results is not ideal, but it offers an easy first attempt at measuring how long a program takes to execute.
4.3 CPU Performance and Its Factors
Users and designers often examine performance using different metrics. If we could relate these different metrics, we could determine the effect of a design change on the performance as seen by the user. Since we are confining ourselves to CPU performance at this point, the bottom-line performance measure is CPU execution time. A simple formula relates the most basic metrics (clock cycles and clock cycle time) to CPU time:
CPU execution time for a program= CPU clock cycles for a program × Clock cycle time

Alternatively, because clock rate and clock cycle time are inverses,
[image: image1.emf]
This formula makes it clear that the hardware designer can improve performance by reducing either the length of the clock cycle or the number of clock cycles required for a program. The designer often faces a trade-off between the number of clock cycles needed for a program and the length of each cycle. Many techniques that decrease the number of clock cycles also increase the clock cycle time.

The equations in our previous examples do not include any reference to the number of instructions needed for the program. However, since the compiler clearly generated instructions to execute, and the computer had to execute the instructions to run the program, the execution time must depend on the number of instructions in a program. One way to think about execution time is that it equals the number of instructions executed multiplied by the average time per instruction. Therefore, the number of clock cycles required for a program can be written as
CPU clock cycles = Instructions for a program × Average clock cycles per instruction
The term clock cycles per instruction, which is the average number of clock cycles each instruction takes to execute, is often abbreviated as CPI. Since different instructions may take different amounts of time depending on what they do, CPI is an average of all the instructions executed in the program. CPI provides one way of comparing two different implementations of the same instruction set architecture, since the instruction count required for a program will, of course, be the same.
Figure 2 shows the basic measurements at different levels in the computer and what is being measured in each case. We can see how these factors are combined to yield execution time measured in seconds per program:
[image: image2.png]Time — Seconds _ Instructions Clock cycles Seconds
me = 5 ogram . Program_ * Instruction . Clock Cycle

Always bear in mind that the only complete and reliable measure of computer performance is time. For example, changing the instruction set to lower the instruction count may lead to an organization with a slower clock cycle time that offsets the improvement in instruction count. Similarly, because CPI depends on type of instructions executed, the code that executes the fewest number of instructions may not be the fastest.

4.4 Benchmark Programs

Although we now know how to measure or estimate the execution time for a given program on a given processor, another problem remains. Specifically, it is not clear which program we should be measuring (and what input data to provide) so we get a meaningful result. Clearly these choices will have a major effect on our analysis. For example, a program that performs mostly memory accesses will probably perform differently than a program that performs a lot of computation; input data that is hard to process or causes worst-case behavior in the constituent algorithms will provoke worse performance than more friendly input. As such, to get an idea of processor performance that is independent of the program being executed, we need to make choices that match typical usage. That is, since we cannot measure the execution time of all possible programs using all possible inputs, we need to find a representative sample of programs (and input data) that can be easily extrapolated to how the processor will really be used.

A benchmark is a program or set of programs selected and used to act as the required sample. Benchmarks allow one to perform comparisons between processor designs by simply measuring and comparing execution time, and to extrapolate to other programs by performing workload characterization and deriving typical instruction mixes. A benchmark should, in general, be representative of the type of applications run on the processor, not be overly dependent on specifics of the processor (unless one wants to test a specific feature), and be reproducible in the sense that we compare and verify results. Benchmarks can usually be placed in one of three main classes:

Application A benchmark application is a single program, specifically selected, or even specifically written, to test particular aspects of performance. Examples include 3DMark series of benchmarks which are used to test the performance of 3D graphics rendering in modern graphics cards. Using a single application enables one to focus on specific items of interest but the results are often not easy to extrapolate because of this.

Suite A benchmark suite is typically a collection of benchmark applications. Where a single application tests only one aspect of performance, the suite captures many aspects by constructing some form of average over all the component applications. This gives less specific results but makes it easier to see trends that apply in general. Examples include the SPEC benchmarks, original versions of which included commonly used UNIX programs such as gzip and ghostview.
Kernel A benchmark kernel is a very small fragment of program; it might not do anything useful alone, but represents the typical computational core of the programs we are interested in. Kernels are usually easy to program and analyze but do not usually test overall system performance. Examples include the Livermore Loops a set of Fortran, and later C, kernels that compute common arithmetic functions such as matrix multiplication and vector dot product. They focus mainly on program fragments that loop over arrays of data reasoning that this is the main computational core of scientific applications.
4.5 Measuring Improvement

Our initial definition of the speed-up given by design X over design Y is somewhat naive. To be more accurate, we need to consider Amdahl’s Law which, roughly speaking, states that the performance improvement of using some faster mode of execution is limited by the fraction of the time the faster mode can be used. In short, Amdahl’s Law is just a slightly technical way of stating the well-known law of diminishing returns. That is, if an improvement implemented in design X is not used very often the benefit in performance will be small: the less it is used, the smaller the improvement will be.

Imagine we improve some hardware design (perhaps some part of the ALU) H within a basic processor design Y to produce a new processor design X. Also, suppose the design for H in processor X speeds-up the original design in processor Y by some factor F. Finally, imagine we have estimated that the proportion of overall time that either processor spends using the device H is P. The new execution time is derived as
EXECUTION-TIME(X) = EXECUTION-TIME(Y) · ((1−P)+(P/F)).
We can also work out the speed-up the improvement produced
[image: image3.emf]
To see that this is correct, consider the denominator of the fraction. The overall execution time of Y will be the execution time of the unimproved portion of the design, which is 1−P, plus the execution time of the improved portion, which is P/F since we improved it by the factor F. Finally, we divided the old execution time by the new execution time just like in our original formula.

Consider an example; imagine processor Y takes ten seconds to execute a program. Then processor X is designed to improve on Y by using a new adder design, maybe it uses a carry look-ahead adder. The adder is used in about 20% of instructions and the new adder is four times as fast. Thus, we compute
[image: image4.emf]
This might come as some surprise; our adder is four times as fast so why is the whole system not much faster ?! This is the law of diminishing returns in effect: unless the adder is used more often, the improvement will not be capitalized on. As it is, processor X will take ~ 8.47 seconds using the new adder.

�

Lec. (3)

College of sciences for women ((())) Dept. of computer sciences

Year 2011-2012

�

Computer Architecture

33d stage

12-10-2011

FIGURE 2 The basic components of performance and how each is measured.

PAGE
Lecturer: Salah Mahdi Saleh

