Variable-Size Codes

Consider the four-symbol a1, a2, a3, and a4. If they appear in our data strings with equal probabilities (= 0.25), then the entropy of the data is −4(0.25 log2 0.25) = 2. Two is the smallest number of bits needed, on the average, to represent each symbol in this case. We can simply assign our symbols the four 2-bit codes 00, 01, 10, and 11. Since the probabilities are equal, the redundancy is zero and the data cannot be compressed below 2 bits/symbol. Next, consider the case where the four symbols occur with different probabilities as shown in Table 1, where a1 appears in the data (on average) about half the time, a2 and a3 have equal probabilities, and a4 is rare. In this case, the data has entropy −(0.49 log2 0.49+0.25 log2 0.25+0.25 log2 0.25+0.01 log2 0.01) ≈ −(−0.050−0.5−0.5− 0.066) = 1.57. The smallest number of bits needed, on average, to represent each symbol has dropped to 1.57.

Symbol Prob. Code1 Code2

a1 .49 1 1

a2 .25 01 01

a3 .25 010 000

a4 .01 001 001

Table 1: Variable-Size Codes.

If we again assign our symbols the four 2-bit codes 00, 01, 10, and 11, the redundancy would be R = -1.57 + log24 = 0.43. This suggests assigning variable-size codes to the symbols. Code1 of Table is designed such that the most common symbol, a1, is assigned the shortest code. When long data strings are transmitted using Code1, the average size (the number of bits per symbol) is 1 * 0.49 + 2 * 0.25 + 3 * 0.25 + 3 * 0.01 = 1.77, which is very close to the minimum. The redundancy in this case is R = 1.77 -1.57 = 0.2 bits per symbol. An interesting example is the 20-symbol string a1a3a2a1a3a3a4a2a1a1a2a2a1a1a3a1a1a2a3a1, where the four symbols occur with (approximately) the right frequencies. Encoding this string with Code1 yields the 37 bits:

1|010|01|1|010|010|001|01|1|1|01|01|1|1|010|1|1|01|010|1

(Without the vertical bars). Using 37 bits to encode 20 symbols yields an average size of 1.85 bits/symbol, not far from the calculated average size. (The reader should bear in mind that our examples are short. To get results close to the best that’s theoretically possible, an input stream with at least thousands of symbols is needed.)

However, when we try to decode the binary string above, it becomes obvious that Code1 is bad. The first bit is 1, and since only a1 is assigned this code, it (a1) must be the first symbol. The next bit is 0, but the codes of a2, a3, and a4 all start with a 0, so the decoder has to read the next bit. It is 1, but the codes of both a2 and a3 start with 01. The decoder does not know whether to decode the string as 1|010|01 . . ., which is a1a3a2 . . ., or as 1|01|001 . . ., which is a1a2a4 Code1 is thus ambiguous. In contrast, Code2, which has the same average size as Code1, can be decoded unambiguously.

The property of Code2 that makes it so much better than Code1 is called the prefix property. This property requires that once a certain bit pattern has been assigned as the code of a symbol, no other codes should start with that pattern (the pattern cannot be the prefix of any other code). Once the string “1” was assigned as the code of a1, no other codes could start with 1 (i.e., they all had to start with 0). Once “01” was assigned as the code of a2, no other codes could start with 01. This is why the codes of a3 and a4 had to start with 00. Naturally, they became 000 and 001.

Following two principles thus does designing variable-size codes: (1) Assign short codes to the more frequent symbols and (2) obey the prefix property. Following these principles produces short, unambiguous codes, but not necessarily the best (i.e., shortest) ones. In addition to these principles, an algorithm is needed that always produces a set of shortest codes (ones with minimum average size). The only input to such an algorithm is the frequencies (or the probabilities) of the symbols of the alphabet.
Prefix Codes

A prefix code is a variable-size code that satisfies the prefix property. The binary representation of the integers does not satisfy the prefix property. Another disadvantage of this representation is that the size n of the set of integers has to be known in advance, since it determines the code size, which is
[image: image5.png]o Uy B By G o o o
T]] d
Zowoow oo ok P o
S o e o
Tanomoow oo o o speniy
Samowmom o [oy
Gomn o om oo o oo
: W o o o Lo
i wn o o oo imom s
i n o oo e friveny
n o o o oo vy
n i o o vy
» G oo i o
n e T wopion iy
n G e e e i
B G e [o
H T e
M G e e onn o
4 w aw o lomeows mje oo
= L o nmmne e o
G om o dome oo e oo
e T A e
13 e o 110110 OIS W0k 0 D
S A L I e o

otk 26 Some Prcs G

. In some applications, a prefix code is required to code a set of integers whose size is not known in advance. Several such codes are presented here.

Four more prefix codes are described in this section. We use B(n) to denote the binary representation of integer n. Thus |B(n)| is the length, in bits, of this representation. We also use B-(n) to denote B(n) without its most significant bit (which is always 1).
Code C1 is made of two parts. To code the positive integer n we first generate the unary code of |B(n)| (the size of the binary representation of n), then append B-(n) to it. An example is n = 16 = 100002. The size of B(16) is 5, so we start with the unary code 11110 (or 00001) and append B-(16) = 0000. The complete code is thus 11110|0000

(or 00001|0000). Another example is n = 5 = 1012 whose code is 110|01. The length of C1(n) is 2
[image: image2.wmf]ë

û

n

2

log

+ 1 bits.
Code C2 is a rearrangement of C1 where each of the 1+
[image: image3.wmf]ë

û

n

2

log

 bits of the first part (the unary code) of C1 is followed by one of the bits of the second part. Thus code C2(16) = 101010100 and C2(5) = 10110.
Code C3 starts with |B(n)| coded in C2, followed by B-(n). Thus 16 is coded as C2(5) = 10110 followed by
B- (16) = 0000, and 5 is coded as code C2(3) = 110 followed by B-(5) = 01. The size of C3(n) is
[image: image4.wmf]ë

û

ë

û

ë

û

)

log

1

(

log

2

log

1

2

2

2

+

+

+

n

Code C4 consists of several parts. We start with B(n). To the left of this we write the binary representation of |B(n)| − 1 (the length of n, minus 1). This continues recursively, until a 2-bit number is written. A zero is then added to the right of the entire number, to make it decodable. To encode 16, we start with 10000, add |B(16)| − 1 = 4 = 100 to the left, then |B(4)| − 1 = 2 = 10
to the left of that and finally, a zero on the right. The result is 10|100|10000|0. To encode 5, we start with 101, add |B(5)| −1 = 2 = 10 to the left, and a zero on the right. The result is 10|101|0.
[image: image1.wmf]ë

û

n

log2

1

+

PAGE
5

_1287905637.unknown

_1287906399.unknown

_1287906576.unknown

_1287901833.unknown

