[image: image1.png]pointer to name

birthdate
SSs number
salary

Figure 0.2

— — — —

A Structure Is an Interpretation

Data structure Lec_2

Data Structures
What's a data structure? Computer hardware represents information in the simplest form possible: sequences of bits, each in one of two possible states. Bits are grouped into bytes, which are sequentially numbered locations constituting the computer's memory.

Computer hardware is designed to store bits to and fetch bits from a specified location. Locations are designated by addresses. Figure 0.1 depicts a sequence of bytes starting at location 4000200. Data types are mechanisms for interpreting bit sequences to give them program-level meaning. Programming languages like Pascal and C provide a vocabulary of primitive types and a grammar of ways they may be manipulated. In using these primitive types, a programmer relies on the compiler to maintain the illusion that there are such things as numbers and characters in the computer. For instance, in Figure 0.1 the first byte could be interpreted as the character ' D' or part of a 4-byte integer (among other things), depending on the type the compiler expects to find there. Of course primitive types do correspond fairly well to the range of bit interpretations supported by hardware operations, which is why they are primitive. Computer hardware directly supports operations such as integer addition, floating-point multiplication, and character comparison.
[image: image2.png]o 0o o o

[« B [e] B [e] £ el [e] B ['e] [e) B [« B Bl (=)
(o] (o] [a] o] (o] Ll Kol Bl Bl {e) [{e] B (o] ol [e)
—iolI— oo —|o|IoI——|—|C]|— oo
(o] [o4 (o] (o (o] [o] o {e] [o] [o] o] o] [o] [o] (o] (o]
olol—|oio|l——]—io]l—|—|—|—1co|—|o
Ol——|—l—lo]l—l——|—l—]—|—]|—|—{c
—|—l—]—l<|l—]—|—]—|—]—]—]l—]—1—]OC
(o] |o] | (o] [o] o] (o] o] [o] o] [o] [e] [e) (o] [e] [e)
O—-—cNmtunOroaL<onYOO W
OO0 O0O0OO00O0O0CO0O0000
ANANANNNNNNNNNNNNAN AN
CO000000OOO0OOOO OO
0000000000000 O
QOO0 0O0O0O0OOOOO
TSI TSI

© o o o

Memory as a Sequence of Bytes

Figure 0.1

Structure
Data structures are higher-level interpretative constructs built out of primitive types and structuring mechanisms. Programming languages typically provide strings, records, arrays, and some kind of support for input and output. As a system-programming language (rather than a "high-level" language), C is a little less rich, but it still provides records (structs), simulates arrays, and supports strings and input/output through library facilities.

The built-in data structures of a language are used on their own for a wide variety of programming purposes. In addition, they are used to construct higher-level data structures, either by application programmers or by developers of software libraries used by application programmers.

The study of data structures lies at the heart of computer science. This course

provides both a conceptual framework for understanding data structures in general and an introduction to the techniques used in the design and implementation of particular important ones. There are many data structures known, but most are variants of the dozen or so fundamental ones discussed in this course. To study or use a specific kind of data structure requires knowing both how to describe, or declare, instances of that structure as well as how to manipulate, or process, them. The term 'data structures' emphasizes their

passive representation, but active behavior is also part of each structure's nature.
The essence of a data structure is the organization it imposes on the otherwise

undifferentiated sequence of bytes in the computer's memory. A data structure is an interpretation — a way of seeing a sequence of bytes as the components of a compound entity with certain behavior. For instance, the sequence of bytes shown in Figure 0.1 can be interpreted as the C string "Data Structures", including the NUL character that by definition ends strings in C. There is nothing in those bytes that dictates that interpretation, however — it's imposed entirely by the program that accesses the bytes.

Another example of the interpretation of memory bytes is shown in Figure 0.2, which depicts the layout of a C struct representing information about a person as it might appear in a payroll program: a pointer to a string representing the person's name, a struct representing a birth date, an i nt for a Social Security number, and a doubl e for a salary.

As the diagram shows, this is a two-level interpretation, since the birth date is itself a structure, represented as three 2-byte s h o r t s for the month, day, and year.

More specifically, a structure's representation is the way its components are arranged, including their types and the organization principle that assigns them their role in the structure's interpretation. Each component is itself another structure or else a primitive value, but either way it is a further interpretation of raw memory. In the case of a C string, the representation is a sequence of bytes ordered as they appear in the string terminated by a NUL byte. That is a natural representation, but nothing would prevent, say, storing all the odd-numbered characters before all the even-numbered characters — the important thing is that the interpretation is consistent across all uses of the bytes. In more formal terms, a structure's representation is a mapping from a conceptual program-level expression to a set of bytes in memory. We store information through that mapping, which transforms the program-level expression into a set of operations on memory, and we get the information out by passing it back through the same transformation (or, more accurately, its inverse). As long as the value returned when a specified component is accessed is the same as was stored previously, it really doesn't matter how

the bytes are stored. For instance, many Pascal compilers happen to allocate the bytes constituting a record structure in the reverse order of their appearance in the declaration, but few Pascal programmers ever realize that. As long as a particular field of a record means the same thing all throughout the program, it doesn't matter whether that field is stored first, last, or somewhere in between.

Another example is the storage of multidimensional arrays in languages that

support them. Consider the following two-dimensional array of characters:

A B C D

 a b c d

We could store the rows first, storing the bytes in the order ABCDabcd, or we could store the columns first, yielding the order AaBbCcDd. We could also store the characters in reverse order: dcbaDCBA or dDcCbBaA. All that matters is that when we request, say, the element in the second column of the first row we get back B. For structures directly supported by a language — arrays, records, strings, etc. —

the compiler implements a representation by turning a particular access expression, such as chars[0][l], into references to particular bytes in memory. Higher-level structures are implemented through declarations and operations defined by a programmer in terms of language types and other programmer-defined structures.
Fundamental Data Structures

Fundamental data structures can be grouped into four categories. The main state structures are stacks, queues, and priority queues. Generally, these are represented as arrays or lists with special rules governing their manipulation. The third kind of fundamental structures are the linked structures. The basic linked structures are lists, trees, and graphs. Linked structures are usually implemented using special support records called nodes. Since each node contains one or more pointers to other nodes, we could also call these recursive structures.
Finally, association structures implement correspondences between access keys and other data. Tables are association structures built on arrays or lists. Search trees store data in trees, ordered by their keys. Indexed files are also association structures, and many older data structure texts featured them prominently; however, as technology has advanced, the study of file organization techniques has become less central to computer science. There's another important kind of data structure that is not included in this categorization. They are omitted because although frequently used, they aren't very, well, structural. The most prominent members of this group are strings and sets. These are more like primitive types, and in fact many high-level languages include them. As primitive types are little more than interpretations of the fundamental bits and bytes of the

computer hardware, these simple data structures are little more than interpretations of other fundamental data structures. For example, a C string is nothing more than part of an array of chars, running from the first component of the array through the first NUL character. Operations on these structures — those provided by the C string library, for example — must adhere to their representational conventions, but they don't introduce any new structuring mechanisms. These simple structures are excellent material for

examples and exercises, but there wouldn't be much to say about their structural aspects, so they aren't explicitly covered in the text.

1

