An Introduction to Quantum Mechanics

The wave-nature of electrons

The quantum theory of radiation introduced by Max Planck and Albert Einstein implies a particle theory of light, in addition to the wave theory of light required by the phenomena of interference and diffraction. In 1924, Louis de Broglie argued that if light were composed of particles and yet showed wave-like properties, the same should be true of electrons and other particles. This phenomenon is referred to as wave–particle duality. The de Broglie relationship combines the concepts of classical mechanics with the idea of wave-like properties by showing that a particle with momentum mv (m = mass and v = velocity of the particle) possesses an associated wave of wavelength λ.

λ = h /mv

where h is the Planck constant.

An important physical observation which is a consequence of the de Broglie 

relationship is that electrons accelerated to a velocity of 6 x106 m s-1 (by a 
potential  of 100 V) have an associated wavelength of 120 pm and such 
electrons are  diffracted as they pass through a crystal. This phenomenon is the 
basis of electron diffraction techniques used to determine structures of chemical 
compounds.

The uncertainty principle

If an electron has wave-like properties, there is an important and difficult consequence: it becomes impossible to know exactly both the momentum and position of the electron at the same instant in time. This is a statement of Heisenberg’s uncertainty principle. In order to get around this problem,

rather than trying to define its exact position and momentum, we use the probability of finding the electron in a given volume of space. The probability of finding an electron at a given point in space is determined from the function Ψ2 where Ψ is a mathematical function which describes the behaviour of an electron-wave; Ψ is the wavefunction.

The Schrodinger wave equation

Information about the wavefunction is obtained from the Schrodinger wave equation, which can be set up and solved either exactly or approximately; the Schrodinger equation can be solved exactly only for a species containing a nucleus and only one electron i.e. a hydrogen-like system.

A hydrogen-like atom or ion contains a nucleus and only one electron.

The Schrodinger wave equation may be represented as:
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where m = mass, E = total energy and V = potential energy of the particle.

Of course, in reality, electrons move in three-dimensional space and an appropriate form of the Schrodinger wave equation is given by:
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It is useful to note that it is advantageous to work in spherical polar coordinates (Figure 1). When we look at the results obtained from the Schrodinger wave equation, we talk in terms of the radial and angular parts of the wavefunction,
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and this is represented in equation 1.14 where R(r) and
A(6, §) are radial and angular wavefunctions respectively.”

Veansian(¥,9:2) = Yradial (" Vangutar (0, 8) = R(r)A(6; 6)
(1.14)
Having solved the wave equation, what are the results?

o The wavefunction ¢ is a solutipn of the Schrdinger
equation and describes the behaviour of an electron in a
region of space called the atomic orbital.

o We can find energy values that are associated with parti-
cular wavefunctions.

o The quantization of energy levels arises naturally from
the Schrodinger equation (see Box 1.3).

A wavefunction 4 is a mathematical function that contains
detailed information about the behaviour of an electron. An
atomic wavefunction ¢ consists of a radial component, R(r),
and an angular component, 4(f, ¢). The region of space
defined by a wavefunction is called an atomic orbital.

The quantum numbers n, / and m;
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number / is called the orbital quantum number and has allowed
values of 0,1,2... (n — 1). The value of / determines the shape
of the atomic orbital, and the orbital angular momentum of the
electron. The value of the magnetic quantum number, my, gives
information about the directionality of an atomic orbital and
has integral values between +/ and —/.

Each atomic orbital may be uniquely labelled by a set of three
quantum numbers: , [ and .

Worked example 1.2 Quantum number.
orbitals

atomic

Given that the principal quantum number, n, is 2, write down
the allowed values of / and m;, and determine the number of
atomic orbitals possible for n = 3.

For a given value of n, the allowed values of / are
0,1,2...(n— 1), and those of m; are —I...0...+l.

For n =2, allowed values of / = 0 or 1.

For I = 0, the allowed value of m; = 0.

For I = 1, allowed values of m; = —1,0,+1

Each set of three quantum numbers defines a particular
atomic orbital, and, therefore, for n =2, there are four
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A wavefunction 1 is a mathematical function that contains
detailed information about the behaviour of an electron. An
atomic wavefunction 1 consists of a radial component, R(r),
and an angular component, 4 (6, ¢). The region of space
defined by a wavefunction is called an atomic orbital.

The quantum numbers n, / and m;

An atomic orbital is usually described in terms of three
integral quantum numbers. We have already encountered the
principal quantum number, n, in the Bohr model of the hydro-
gen atom. The principal quantum number is a positive integer
with values lying between the limfts 1< n < oo; allowed
values arise when the radial part of the wavefunction is
solved.

Two more quantum numbers, / and m, appear when the
angular part of the wavefunction is solved. The quantum

" The radial component in equation 1.14 depends on the quantum
numbers n and /, whereas the angular component depends on I and
my, and the components should really be written as Ry(r) and
At (6, ¢).

Given that the principal quantum number, n, is 2, write down
the allowed values of / and m;, and determine the number of
atomic orbitals possible for n = 3.

For a given value of n, the allowed values of / are
0,1,2...(n— 1), and those of m; are —I...0...+l.
For n =2, allowed values of / = 0 or 1.
0, the allowed value of m,
1, allowed values of m; = —1,0,+1
Each set of three quantum numbers defines a particular
atomic orbital, and, therefore, for 7= 2, there are four
atomic orbitals with the sets of quantum numbers:

=0,
=1,
=1,
=1,

n=2, m=0

n=2, m=—1
n=2,

n=2,

m=0

m=+1

Self-study exercises

1. If my has values of —1,0,+1, write down the corresponding
value of I. [Ans. 1=1]

2. If I has values 0, 1,2 and 3, deduce the corresponding value of n.
[Ans. n= 4]





Having solved the wave equation, what are the results?

.(i) The wavefunction is a solution of the Schrodinger

equation and describes the behaviour of an electron in a

region of space called the atomic orbital.

.(ii) We can find energy values that are associated with particular

wavefunctions.

(iii) The quantization of energy levels arises naturally from

the Schrodinger equation
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and this is represented in equation 1.14 where R(r) and
A(6, §) are radial and angular wavefunctions respectively.”
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Having solved the wave equation, what are the results?

o The wavefunction 1 is a solution of the Schrodinger
equation and describes the behaviour of an electron in a
region of space called the atomic orbital.

o We can find energy values that are associated with parti-
cular wavefunctions.

o The quantization of energy levels arises naturally from
the Schrodinger equation (see Box 1.3).

A wavefunction 4 is a mathematical function that contains
detailed information about the behaviour of an electron. An
atomic wavefunction ¢ consists of a radial component, R(r),
and an angular component, 4(f, ¢). The region of space
defined by a wavefunction is called an atomic orbital.

The quantum numbers n, / and m;
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number / is called the orbital quantum number and has allowed
values of 0,1,2... (n — 1). The value of / determines the shape
of the atomic orbital, and the orbital angular momentum of the
electron. The value of the magnetic quantum number, my, gives
information about the directionality of an atomic orbital and
has integral values between +/ and —/.

Each atomic orbital may be uniquely labelled by a set of three
quantum numbers: , [ and .

Worked example 1.2 Quantum number.
orbitals

atomic

Given that the principal quantum number, n, is 2, write down
the allowed values of / and m;, and determine the number of
atomic orbitals possible for n = 3.

For a given value of n, the allowed values of / are
0,1,2...(n— 1), and those of m; are —I...0...+l.

For n =2, allowed values of / = 0 or 1.

For I = 0, the allowed value of m; = 0.

For I = 1, allowed values of m; = —1,0,+1

Each set of three quantum numbers defines a particular
atomic orbital, and, therefore, for n =2, there are four
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The quantum numbers n, l and ml
An atomic orbital is usually described in terms of three integral quantum numbers. We have already encountered the principal quantum number, n, in the Bohr model of the hydrogen atom. The principal quantum number is a positive integer with values lying between the limits 1 ≤ n ≤ ∞; allowed values arise when the radial part of the wavefunction is solved.

Two more quantum numbers, l and ml, appear when the angular part of the wavefunction is solved. The quantum number l is called the orbital quantum number and has allowed values of 0; 1; 2 . . . (n - 1). The value of l determines the shape of the atomic orbital, and the orbital angular momentum of the electron. The value of the magnetic quantum number, ml, gives information about the directionality of an atomic orbital and has integral values between +l and - l.

Each atomic orbital may be uniquely labeled by a set of three quantum numbers: n, l and ml .
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A wavefunction 1 is a mathematical function that contains
detailed information about the behaviour of an electron. An
atomic wavefunction 1 consists of a radial component, R(r),
and an angular component, 4 (6, ¢). The region of space
defined by a wavefunction is called an atomic orbital.

The quantum numbers n, / and m;

An atomic orbital is usually described in terms of three
integral quantum numbers. We have already encountered the
principal quantum number, n, in the Bohr model of the hydro-
gen atom. The principal quantum number is a positive integer
with values lying between the limits 1< 7 < oo; allowed
values arise when the radial part of] the wavefunction is
solved.

Two more quantum numbers, / and m, appear when the
angular part of the wavefunction is solved. The quantum

" The radial component in equation 1.14 depends on the quantum
numbers n and /, whereas the angular component depends on I and
my, and the components should really be written as Ry(r) and
At (6, ¢).

Given that the principal quantum number, n, is 2, write down
the allowed values of / and m;, and determine the number of
atomic orbitals possible for n = 3.

For a given value of n, the allowed values of / are
0,1,2...(n— 1), and those of m; are —I...0...+l.
For n =2, allowed values of / = 0 or 1.
0, the allowed value of m,
1, allowed values of m; = —1,0,+1
Each set of three quantum numbers defines a particular
atomic orbital, and, therefore, for 7= 2, there are four
atomic orbitals with the sets of quantum numbers:

=0,
=1,
=1,
=1,

n=2, m=0

n=2, m=—1
n=2,

n=2,

m=0

m=+1

Self-study exercises

1. If my has values of —1,0,+1, write down the corresponding
value of I. [Ans. 1=1]

2. If I has values 0, 1,2 and 3, deduce the corresponding value of n.
[Ans. n= 4]
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3. For n = 1, what are the allowed values of 7 and m;?
[Ans. 1 =03 my = 0]
4. Complete the following sets of quantum numbers: (a) n =4,
I=0,m =50 n=3I=1m=...
[Ans. (a) 05 (b) —1, 0, +1]

The distinction among the types of atomic orbital arises
from their shapes and symmetries. The four types of atomic
orbital most commonly encountered are the s, p, d and f
orbitals, and the corresponding values of / are 0, 1, 2 and 3
respectively. Each atomic orbital is labelled with values of
nand /, and hence we speak of Ls, 2s, 2p, 3s, 3p, 3d, 4s, 4p,
4d, 4f etc. orbitals.

For an s orbital, / = 0. For a p orbital, / =
For adotbital, / =2.  For an f orbital, /

Worked example 1.3 Quantum number.
orbital

types of

Using the rules that govern the values of the quantum numbers

can only equal 0. This means that for any value of n,
there is only one s orbital; it is said to be singly degenerate.
For a p orbital, / = 1, and there are three possible m; values:
+1, 0, —1. This means that there are three p orbitals
for a given value of # when 1 > 2; the set of p orbitals is
said to be triply or three-fold degenerate. For a d orbital,
=2, and there are five possible values of my: +2, +1, 0,
—1, —2, meaning that for a given value of n (n > 3), there
are five d orbitals; the set is said to be five-fold
degenerate. As an exercise, you should show that there
are seven f orbitals in a degenerate set for a given value
of n(n>4).

For a given value of 1 (n > 1) there is one s atomic

orbita

For a given value of 1 (1 > 2) there are three p atomic
orbitals.

Fora given value of n (n > 3) there are five d atomic orbitals.
For a given value of 1 (n > 4) there are seven f atomic
orbitals.

The radial part of the wavefunction, R(r)

The mathematical forms of some of the wave functions for
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Using the rules that govern the values of the quantum numbers
n and I, write down the possible types of atomic orbital for
n=1,2and3.

The allowed values of / are integers between 0 and (1 — 1).
Forn=1,1=0.
The only atomic orbital for n = 1 is the s orbital.

Forn=2,I=0orl
The allowed atomic orbitals for n = 2 are the 25 and 2p
orbitals.

Forn=3,1=0,10r2.
The allowed atomic orbitals for n = 3 are the 3s, 3p and 3d
orbitals.

Self-study exercises

1. Write down the possible types of atomic orbital for n = 4.
[Ans. ds, 4p, 4d, 4f |

Which atomic orbital has values of n = 4 and [ = 2?
[Ans. 4d]

»

-

Give the three quantum numbers that describe a 25 atomic
orbital. [Ans.n=2,1=0,m =0]

4. Which quantum number distinguishes the 3s and s atomic
orbitals? [Ans. n]

The radial part of the wavefunction, R(r)

The mathematical forms of some of the wave functions for
the H atom are listed in Table 1.2. Figure 1.5 shows plots
of the radial parts of the wavefunction, R(r), against dis-
tance, r, from the nucleus for the 1s and 2s atomic orbitals
of the hydrogen atom, and Figure 1.6 shows plots of
R() against r for the 2p, 3p, 4p and 3d atomic orbitals;
the nucleus is at r = 0.

From Table 1.2, we see that the radial parts of the wave-
functions decay exponentially as r increases, but the decay is
slower for n = 2 than for n = 1. This means that the likeli-
hood of the electron being further from the nucleus increases
as n increases. This pattern continues for higher values of n.
The exponential decay can be seen clearly in Figure 1.5a.
Several points should be noted from the plots of the radial
parts of wavefunctions in Figures 1.5 and 1.6:

o satomic orbitals have a finite value of R(r) at the nucleus;

e for all orbitals other than s, R(r) = 0 at the nucleus;

o for the Is orbital, R(r) is always positive; for the first
orbital of other types (i.e. 2p, 3d, 4f), R(r) is positive
everywhere except at the origin;

o for the second orbital of a given type (i.c. 2s, 3p, 4d, 5f),
R(r) may be positive or negative but the wavefunction has
only one sign change; the point at which R(r) = 0 (not
including the origin) is called a radial node;

o for the third orbital of a given type (i.c. 3s, 4p, 5d, 6/),
R(r) has two sign changes, i.e. it possesses two radial
nodes.
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Degenerate orbitals possess the same energy.

Now consider the consequence on these orbital types of the quantum number ml . For an s orbital, l = 0 and ml can only equal 0. This means that for any value of n,

there is only one s orbital; it is said to be singly degenerate. For a p orbital, l = 1, and there are three possible ml values: +1, 0, -1. This means that there are three p orbitals for a given value of n when n ≥ 2; the set of p orbitals is said to be triply or three-fold degenerate. For a d orbital, l = 2, and there are five possible values of ml: +2, +1, 0, -1, -2, meaning that for a given value of n (n ≥  3), there are five d orbitals; the set is said to be five-fold

degenerate. As an exercise, you should show that there are seven f orbitals in a degenerate set for a given value of n (n ≥  4).

For a given value of n (n ≥ 1) there is one s atomic orbital.

For a given value of n (n ≥ 2) there are three p atomic orbitals.

For a given value of n (n ≥ 3) there are five d atomic orbitals.

For a given value of n (n ≥ 4) there are seven f atomic orbitals.

