[image: image1.emf]
[image: image2.emf]
6.6 Function Calls

Function calls are clearly another type of control-flow mechanism so we briefly look at the issue here with respect to support that is provided by the ISA. Considering a call to a sub-routine X, i.e., a function X with no arguments, execution looks like the following:

1. Branch to the sub-routine X, i.e., call the sub-routine.

2. Execute the sub-routine X.

3. Branch back to just after the call instruction.

The first two steps are simple enough and can be catered for using instructions already presented. The problem comes in the third step: a given sub-routine may be called from a number of different places, how do we know where to branch back to ? The answer is to store the address to branch back to, the return address, somewhere when we call the sub-routine. There are three main options as regards where to store the return address:

• One could store the return address in a single fixed memory location or register. Although simple, this is a bad choice as it only allows the call of one sub-routineat a time; nested sub-routines are not really possible. 
• One could store the return address in a per-sub-routine fixed memory location or register. This is a better option in that it allows nested sub-routine calls but still does not allow any form of recursion. 
• Finally, one could use a stack; this is the most common solution since it allows total freedom with recursion and also facilitates argument passing when considering functions rather than simply sub-routines.

The MIPS32 ISA includes a common instruction called jal for jump-and-link that helps implement the first option above. The jal instruction performs two tasks: firstly it stores the return address in GPR[31], and then it performs a normal, unconditional absolute branch. The jr instruction offers a mechanism to branch to the contents of a register so this enables the sub-routine to branch back to the return address by using GPR[31]. As such, these two instructions offer an efficient but limited form of sub-routine call. We will examine a more complete mechanism which solves the problems in Chapter 11 since more general function calls are essentially a mechanism implemented by the compiler rather than in the processor. Note that the jal instruction is the first we have seen to blur the divide between general and special-purpose registers: GPR[31] is a general-purpose register but it is reserved here for a special role.
6.7 Instruction Set Architecture

The ISA serves as the boundary between the software and hardware. This quick review of ISA will use examples from MIPS and 80x86 to illustrate the seven dimensions of an ISA. 
1.Class of ISA—Nearly all ISAs today are classified as general-purpose register architectures, where the operands are either registers or memory locations. The 80x86 has 16 general-purpose registers and 16 that can hold floating-point data, while MIPS has 32 general-purpose and 32 floating-point registers (see Figure 1.4). The two popular versions of this class are register-memory ISAs such as the 80x86, which can access memory as part of many instructions, and load-store ISAs such as MIPS, which can access memory only with load or store instructions. All recent ISAs are load-store.
2.Memory addressing —Virtually all desktop and server computers, including the 80x86 and MIPS, use byte addressing to access memory operands. Some architectures, like MIPS, require that objects must be aligned . An access to an object of size s bytes at byte address A is aligned if A mod s = 0. The 80x86 does not require alignment, but accesses are generally faster if operands are aligned.
3. Addressing modes —In addition to specifying registers and constant operands, addressing modes specify the address of a memory object. MIPS addressing modes are Register, Immediate (for constants), and Displacement, where a constant offset is added to a register to form the memory address. The 80x86 supports those three plus three variations of displacement: no register (absolute), two registers (based indexed with displacement), two registers where one register is multiplied by the size of the operand in bytes (based with scaled index and displacement). It has more like the last three, minus the displacement field: register indirect, indexed, and based with scaled index.
4.Types and sizes of operands —Like most ISAs, MIPS and 80x86 support operand sizes of 8-bit (ASCII character), 16-bit (Unicode character or half word), 32-bit (integer or word), 64-bit (double word or long integer), and IEEE 754 floating point in 32-bit (single precision) and 64-bit (double precision). The 80x86 also supports 80-bit floating point (extended double precision).
5. Operations —The general categories of operations are data transfer, arithmetic

logical, control (discussed next), and floating point. MIPS is a simple and easy-to-pipeline instruction set architecture, and it is representative of the RISC architectures being used in 2006. Figure 1.5 summarizes the MIPS ISA. The 80x86 has a much richer and larger set of operations (see Appendix J).
6.Control flow instructions—Virtually all ISAs, including 80x86 and MIPS, support conditional branches, unconditional jumps, procedure calls, and returns. Both use PC-relative addressing, where the branch address is specified by an address field that is added to the PC. There are some small differences. MIPS conditional branches ( BE, BNE, etc.) test the contents of registers, while the 80x86 branches (JE, JNE, etc.) test condition code bits set as side effects of arithmetic/logic operations. MIPS procedure call ( JAL) places the return address in a register, while the 80x86 call ( CALLF) places the return address on a stack in memory.
7. Encoding an ISA—There are two basic choices on encoding: fixed length and variable length . All MIPS instructions are 32 bits long, which simplifies instruction decoding. Figure 1.6 shows the MIPS instruction formats. The 80x86 encoding is variable length, ranging from 1 to 18 bytes. Variable length instructions can take less space than fixed-length instructions, so a program compiled for the 80x86 is usually smaller than the same program compiled for MIPS. Note that choices mentioned above will affect how the instructions are encoded into a binary representation. For example, the number of registers and the number of addressing modes both have a significant impact on the size of instructions, as the register field and addressing mode field can appear many times in a single instruction.
6.7.1 Classifying Instruction Set Architectures
The type of internal storage in a processor is the most basic differentiation, so in this section we will focus on the alternatives for this portion of the architecture. The major choices are a stack, an accumulator, or a set of registers. Operands may be named explicitly or implicitly: The operands in a stack architecture are implicitly on the top of the stack, and in an accumulator architecture one operand is implicitly the accumulator. The general-purpose register architectures have only explicit operands—either registers or memory locations. Figure 6 shows a block diagram of such architectures, and Figure 7 shows how the code sequence C=A+B would typically appear in these three classes of instruction sets. The explicit operands may be accessed directly from memory or may need to be first loaded into temporary storage, depending on the class of architecture and choice of specific instruction.

As the figures show, there are really two classes of register computers. One class can access memory as part of any instruction, called register-memory architecture, and the other can access memory only with load and store instructions, called load-store architecture. A third class, not found in computers shipping today, keeps all operands in memory and is called a memory-memory architecture. Some instruction set architectures have more registers than a single accumulator, but place restrictions on uses of these special registers. Such an architecture is sometimes called an extended accumulator or special-purpose register computer.
[image: image3.emf]

Although most early computers used stack or accumulator-style architectures, virtually every new architecture designed after 1980 uses a load-store register architecture. The major reasons for the emergence of general-purpose register (GPR) computers are twofold. First, registers—like other forms of storage internal to the processor—are faster than memory. Second, registers are more efficient for a compiler to use than other forms of internal storage. For example, on a register computer the expression (A*B) – (B*C) – (A*D) may be evaluated by doing the multiplications in any order, which may be more efficient because of the location of the operands or because of pipelining concerns (see Chapter 2). Nevertheless, on a stack computer the hardware must evaluate the expression in only one order, since operands are hidden on the stack, and it may have to load an operand multiple times.
How many registers are sufficient? The answer, of course, depends on the effectiveness of the compiler. Most compilers reserve some registers for expression evaluation, use some for parameter passing, and allow the remainder to be allocated to hold variables. Modern compiler technology and its ability to effectively use larger number of registers has led to an increase in register counts in more recent architectures.
Two major instruction set characteristics divide GPR architectures. Both characteristics concern the nature of operands for a typical arithmetic or logical instruction (ALU instruction). The first concerns whether an ALU instruction has two or three operands. In the three-operand format, the instruction contains one result operand and two source operands. In the two-operand format, one of the operands is both a source and a result for the operation. The second distinction among GPR architectures concerns how many of the operands may be memory addresses in ALU instructions. The number of memory operands supported by a

typical ALU instruction may vary from none to three. Figure B.3 shows combinations of these two attributes with examples of computers. Although there are seven possible combinations, three serve to classify nearly all existing computers. As we mentioned earlier, these three are load-store (also called register-register), register-memory, and memory-memory.

Figure 8 shows the advantages and disadvantages of each of these alternatives. Of course, these advantages and disadvantages are not absolutes: They are qualitative and their actual impact depends on the compiler and implementation strategy. A GPR computer with memory-memory operations could easily be ignored by the compiler and used as a load-store computer. One of the most pervasive architectural impacts is on instruction encoding and the number of instructions needed to perform a task.

Figure 7 The code sequence for C= A+Bfor four classes of instruction sets. Note that the Add instruction has implicit operands for stack and accumulator architectures, and explicit operands for register architectures. It is assumed that A, B, and C all belong in memory and that the values of A and B cannot be destroyed. Figure B.1 shows the Add operation for each class of architecture.








Lec. (8)








College of sciences for women ((())) Dept. of computer sciences


Year 2011-2012





�





Figure 6 Operand locations for four instruction set architecture classes. The arrows indicate whether the operand is an input or the result of the ALU operation, or both an input and result. Lighter shades indicate inputs, and the dark shade indicates the result. In (a), a Top Of Stack register (TOS), points to the top input operand, which is combined with the operand below. The first operand is removed from the stack, the result takes the place of the second operand, and TOS is updated to point to the result. All operands are implicit. In (b), the Accumulator is both an implicit input operand and a result. In (c), one input operand is a register, one is in memory, and the result goes to a register. All operands are registers in (d) and, like the stack architecture, can be transferred to memory only via separate instructions: push or pop for (a) and load or store for (d).





Computer Architecture


33d  stage


14-12-2011





�





�





Figure 8 Advantages and disadvantages of the three most common types of general-purpose register computers. The notation (m, n) means m memory operands and n total operands. In general, computers with fewer alternatives simplify the compiler’s task since there are fewer decisions for the compiler to make.8). Computers with a wide variety of flexible instruction formats reduce the number of bits required to encode the  program. The number of registers also affects the instruction size since you need log 2 (number of registers) for each register specifier in an instruction. Thus, doubling the number of registers takes 3 extra bits for a register-register architecture, or about 10% of a 32-bit instruction.








PAGE  
Lecturer: Salah Mahdi Saleh


