[image: image1.emf][image: image2.emf][image: image3.emf]

7-Characters and strings of text:
A personal computer processes textual information. Individual key-strokes generate letters, numbers, or other symbols that are called characters. Groups of characters treated as  units are called strings. Since characters and strings can’t be processed directly by machine that “understand” only binary numbers, they must be encoded in some kind of binary code. The computer uses coding system called ASCII (American Standard Code for Information Interchange). ASCII associates a unique 8-bits binary with each character symbol.
The standard ASCII uses 7 bits to encode a character. Thus, 27=128 different characters can be represented. This number is sufficiently large to represent uppercase and lowercase characters, digits, special characters such as !,ˆ, and control characters such as CR (carriage return), LF (line feed), and so on.
Since we store the bits in units of a power of 2, we end up storing 8 bits for each character, even though ASCII requires only 7 bits. The eighth bit is put to use for two purposes: 

1. To Parity Encode for Error Detection: The eighth bit can be used to represent the parity bit. This bit is made 0 or 1 such that the total number of 1s in a byte is even (for even parity) or odd (for odd parity). This can be used to detect simple errors in data transmission.
2. To Represent an Additional 128 Characters: By using all 8 bits we can represent a total of 28=256 different characters. This is referred to as extended ASCII. 
Thus, an additional 128 encodings have been added, mostly to take care of the Latin letters, accents, and diacritical marks. . The biggest decimal equivalent we can express in 8-bits is 11111111, which is the sum of all powers of two from zero to seven.

11111111 binary = 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 

                             = 255 decimal.
In ASCII the letter A is associated with 01000001 binary. The numeral (not its value) 1 is associated with 00110001 binary. People usually convert binary codes to their decimal equivalents when they refer to them. Hence, A is represented by the decimal number 65 and numeral 1 is represented by decimal number 49.

Suppose you want to store a line in computer memory. You enter the string of characters into the computer through the keyboard. The keyboard converts each key-stroke into ASCII binary code.

Everything is exactingly stored as binary numbers: letters of alphabet, numerals, punctuation marks, and special characters ($, #, %, and so on). Each character has its own 8-bits code. The memory of computer can record binary digits and nothing else, so all kinds of information must be encoded. The power of a computer to manipulate symbols is hidden in the simplicity of coding scheme.




8-Unsigned Integer Representation.

Now that you are familiar with different number systems, let us turn our attention to how integers (numbers with no fractional part) are represented internally in computers. Of course, we know that the binary number system is used internally. Still, there are a number of other details that need to be sorted out before we have a workable internal number representation scheme.

The most natural way to represent unsigned (i.e., nonnegative) numbers is to use the equivalent binary representation. A binary number with n bits can represent 2n different values, and the range of the numbers is from 0 to 2n-1. Padding of 0s on the left can be used to make the binary conversion of a decimal number equal exactly N bits. For example, to represent 16D we need                  = 5 bits. Therefore, 16D = 10000B. However, this can be extended to a byte (i.e., N=8 ) as

00010000B
A problem arises if the number of bits required to represent an integer in binary is more than the N bits we have. Clearly, such numbers are outside the range of numbers that can be represented using N bits. Recall that using N bits, we can represent any integer X such that

9-Signed number.
One common way of handling negative numbers is to add one bit to the binary code of the number called sign bit. This is the frequently the most left bit, with a 0 indicating a positive number and a 1 a negative number.

There are three widely used techniques for representing both positive and negative numbers:-

1. sign and magnitude.

2. 1’s complement.

3. 2’s complement.
In sign and magnitude method the first bit from the left used for a sign and the remaining for the magnitude of the number. For example, the numbers between  -127 and  +127 could be represented in 8 bits , the first being used for a sign and the remaining 7 for the magnitude.

If there are the following bits ( b7 b6 b5 b4 b3 b2 b1 b0 ) where b7 is the sign bit, then the value of the number is given by:

( 1-2b7 ) ( b6×26 + b5×25 + b4×24 + b3×23 + b2×22 + b1×21 + b0×20 )

The positive values have the same representation systems, while variation occur in the representation of negative values.

In the 1’s complement representation system, negative values are obtained by complementing each bit of the representation of the corresponding positive value.

For example, the value -3 is obtained by bit complementing 0011 to obtain 1100. Finally, in 2’ complement system, a negative value is obtained by adding 1 to the 1’ complement of value.

EX: Represent the number +9 using the three methods

+9 
0,1001

signed – magnitude



0,1001

1`s complement



0,1001

2`s complement

EX: what is the 1`s complement, 2`s complement and signed – magnitude of -9.

-9

1,1001

signed – magnitude



1,0110

1`s complement



1,0111

2`s complement

Note:- Special case in 2’s complement representation is be that whenever a signed number has a 1 in the sign bit and a 0 for all the magnitude bits, its decimal equivalent is ( -2N-1 ) where N is the total number of bits including sign bit. For example:

      1,0000                     -25-1 = -24 = -16

The advantage of the sign 2’s complement representation over the 1’s complement and sign/magnitude is that it contains only one type of zero while the other representations have both a +0 and -0. And the other is that addition of 2’ complement numbers can be performed without regard for the sign.

HW// Convert the following binary numbers to its decimal codes :
           00110011

           00000111

           10000001

           10101010

           11110000
Lec. (3)





Computer Organization


1st stage


18-12-2010





College of sciences for women ((())) Dept. of computer sciences


Year 2011-2012





Table 2: illustrates hexa and decimal codes for ASCII control codes





�





Table 3: illustrates hexa and decimal codes for ASCII printable character codes.





�





�





0 ≤ X ≤ 2n-1.








PAGE  
Lecturer: Mohamed U. Mahdi

