[image: image2.emf]

10. Clocks

Every computer contains an internal clock that regulates how quickly instructions can be executed. The clock also synchronizes all of the components in the system. As the clock ticks, it sets the pace for everything that happens in the system, much like a symphony conductor. The CPU uses this clock to regulate its progress, checking the otherwise unpredictable speed of the digital logic gates. The CPU requires a fixed number of clock ticks to execute each instruction. Therefore, instruction performance is often measured in clock cycles—the time between clock ticks—instead of seconds. The clock frequency (sometimes called the clock rate or clock speed) is measured in MHz, where 1MHz is equal to 1 million cycles per second (so 1 hertz is 1 cycle per second). The clock cycle time (or clock period) is simply the reciprocal of the clock frequency. For example, an 800MHz machine has a clock cycle time of 1/800,000,000 or 1.25ns. If a machine has a 2ns cycle time, then it is a 500MHz machine.

Most machines are synchronous: there is a master clock signal, which ticks (changing from 0 to 1 to 0 and so on) at regular intervals. Registers must wait for the clock to tick before new data can be loaded. It seems reasonable to assume that if we speed up the clock, the machine will run faster. However, there are limits on how short we can make the clock cycles. When the clock ticks and new data is loaded into the registers, the register outputs are likely to change. These changed output values must propagate through all the circuits in the machine until they reach the input of the next set of registers, where they are stored. The clock cycle must be long enough to allow these changes to reach the next set of registers. If the clock cycle is too short, we could end up with some values not reaching the registers. This would result in an inconsistent state in our machine, which is definitely something we must avoid. But recall that registers cannot change values until the clock ticks, so we have, in effect, increased the number of clock cycles. For example, an instruction that would require 2 clock cycles might now require three or four (or more, depending on where we locate the additional registers). Most machine instructions require 1 or 2 clock cycles, but some can take 35 or more.
We present the following formula to relate seconds to cycles:

[image: image1.png]. seconds instructions averagecycles seconds
CPU time = E X — —— x
program program instructin cycle

It is important to note that the architecture of a machine has a large effect on its performance. Two machines with the same clock speed do not necessarily execute instructions in the same number of cycles. For example, a multiply operation on an older Intel 286 machine required 20 clock cycles, but on a new Pentium, a multiply operation can be done in 1 clock cycle, which implies the newer machine would be 20 times faster than the 286 even if they both had the same internal system clock. In general, multiplication requires more time than addition, floating point operations require more cycles than integer ones, and accessing memory takes longer than accessing registers.

Generally, when we mention the term clock, we are referring to the system clock, or the master clock that regulates the CPU and other components. However, certain buses also have their own clocks. Bus clocks are usually slower than CPU clocks, causing bottleneck problems.

11. Interrupts

We have introduced the basic hardware information required for a solid understanding of computer architecture: the CPU, buses, the control unit, registers, clocks, I/O, and memory. However, there is one more concept we need to cover that deals with how these components interact with the processor: Interrupts are events that alter (or interrupt) the normal flow of execution in the system. An interrupt can be triggered for a variety of reasons, including:

· I/O requests

· Arithmetic errors (e.g., division by zero)

· Arithmetic underflow or overflow

· Hardware malfunction (e.g., memory parity error)

· User-defined break points (such as when debugging a program)

· Page faults.
· Invalid instructions (usually resulting from pointer issues)

· Miscellaneous

The actions performed for each of these types of interrupts (called interrupt handling) are very different. Telling the CPU that an I/O request has finished is much different from terminating a program because of division by zero. But these actions are both handled by interrupts because they require a change in the normal flow of the program's execution.
A 256-element table containing address pointers to the interrupt service program locations resides in absolute locations 0 through 3FFH (See figure 12), which are reserved for this purpose. Each element in the table is 4 bytes in size and corresponds to an interrupt ‘‘type’’. An interrupting device supplies an 8-bit type number during the interrupt acknowledge sequence which is used to ‘‘vector’’ through the appropriate element to the new interrupt service program location.

Since each entry in the interrupt vector table is 4 bytes long, the interrupt type is multiplied by 4 to get the corresponding interrupt handler pointer in the table. For example, int 2 can find the interrupt handler pointer at memory address 2 × 4 = 00008H.

An interrupt can be initiated by the user or the system, can be maskable (disabled or ignored) or nonmaskable.

NON-MASKABLE INTERRUPT (NMI)
A high priority interrupt that cannot be disabled and must be acknowledged. The NMI is used for handling potentially catastrophic events such as power failures or the detection of a memory failure. This is the interrupt that cannot be ignored and must always be serviced immediately can occur within or between instructions, may be synchronous (occurs at the same place every time a program is executed) or asynchronous (occurs unexpectedly), and can result in the program terminating or continuing execution once the interrupt is handled.
MASKABLE INTERRUPT (INTR)
Maskable interrupts can be delayed until execution reaches a convenient point.
Most hardware interrupts are of maskable type.

Microprocessors

2nd stage

22-12-2011

College of sciences for women ((())) Dept. of computer sciences

Year 2011-2012

Figure 12 Interrupt vector table in memory (real mode).

�

Lec. (7)

PAGE
Lecturer: Salah Mahdi Saleh

