The Cartesian Product‡
Definition 

The Cartesian product, X×Y, of two sets X and Y is the set of all ordered

pairs (x, y) where x belongs to X and y belongs to Y :

X × Y = {(x, y) : x ∈ X and y ∈ Y }.

When X = Y , it is usual to denote X × X by X2. This is read as ‘X two’ and not

‘X squared’.

Note that, if either X or Y (or both) is the empty set then X ×Y is also the empty

If X and Y are both non-empty, then X × Y = Y × X if and only if X = Y. The

implication in one direction is obvious; if X = Y then clearly X × Y = Y × X.

For the converse, we prove its contrapositive: if X _= Y then X × Y _= Y × X.

Examples 
1. If X = {1, 2} and Y = {a, b, c} then

X × Y = {(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)}.

The elements of the sets X, Y and X×Y can be represented systematically

Definition 
The Cartesian product of the sets X1, X2, . . . , Xn is

X1 × X2 ×· · ·× Xn

= {(x1, x2, . . . , xn) : x1 ∈ X1 and x2 ∈ X2 and . . . and xn ∈ Xn}

= {(x1, x2, . . . , xn) : xi ∈ Xi for i = 1, 2, . . . , n}.

Again we write Xn (which is read ‘X n’ rather than ‘X to the (power) n’) in the

case where Xi = X for i = 1, 2, . . . , n. For the general case, the Cartesian

product X1 × X2 ×· · ·× Xn is sometimes abbreviated

 .
Examples 

1. If A = {1, 2}, B = {a, b} and C = {α, β} then

A × B × C = {(1, a, α), (1, a, β), (1, b, α), (1, b, β), (2, a, α),

(2, a, β), (2, b, α), (2, b, β)}..
Theorem 
If X1, X2, . . . , Xn are finite sets then

|X1 × X2 ×· · ·× Xn| = |X1| × |X2|×· · ·×|Xn|.

We
Examples 
1. Let A = {a, b, c, d}, X = {x, y, z} and Y = {y, z, t}. Then

X ∩ Y = {y, z}

so

A×(X ∩Y ) = {(a, y), (a, z), (b, y), (b, z), (c, y), (c, z), (d, y), (d, z)}.

Now

A × X = {(a, x), (a, y), (a, z), (b, x), (b, y), (b, z), (c, x),

(c, y), (c, z), (d, x), (d, y), (d, z)},

and

A × Y = {(a, y), (a, z), (a, t), (b, y), (b, z), (b, t), (c, y),

(c, z), (c, t), (d, y), (d, z), (d, t)}.

Therefore

(A × X) ∩ (A × Y ) = {(a, y), (a, z), (b, y), (b, z), (c, y), (c, z),

(d, y), (d, z)}.

Therefore, for the sets in this example,

A × (X ∩ Y ) = (A × X) ∩ (A × Y ),

2. To investigate whether a similar identity may hold for unions, consider

the sets A = {a, b}, X = {x, y} and Y = {y, z}. Then X ∪ Y = {x, y, z},

so

A × (X ∪ Y ) = {(a, x), (a, y), (a, z), (b, x), (b, y), (b, z)}

= {(a, x), (a, y), (b, x), (b, y)}

∪ {(a, y), (a, z), (b, y), (b, z)}

= (A × X) ∪ (A × Y ).

Theorem 
(i) For all sets A, B and C
A × (B ∩ C ) = (A × B) ∩ (A × C )

and

(B ∩ C ) × A = (B × A) ∩ (C × A).

(This says that the Cartesian product is distributive over

intersection.)

(ii) For all sets A, X and Y

A × (B ∪ C) = (A × B) ∪ (A × C )

and

(B ∪ C ) × A = (B× A) ∪ (C × A).

(This says that the Cartesian product is distributive over union.)

Proof.
Let (a, b) ∈ A × (B ∩ C ). By the definition of the Cartesian product, this means

that a ∈ A and x ∈ (B ∩C ). Thusxx ∈ B, so (a, b) belongs to A× B; and x ∈ C ,

so (a, x) belongs to A×C as well. Therefore (a, x) ∈ (A× B)∩(A×C ), which

proves that A × (B∩ C ) ⊆ (A × B) ∩ (A × C).

To prove the subset relation the other way round as well, let

(a, x) ∈ (A × B) ∩ (A × C ).

Then (a, x) ∈ (A × B), so a ∈ A and x ∈ B; and (a, x) ∈ (A × C ), so

a ∈ A and x ∈ B . Therefore a ∈ A and x ∈ (B∩ C ) which means that

the ordered pair (a, x) belongs to the Cartesian product A × (B ∩ C ). Hence

(A × X) ∩ (A × Y ) ⊆ A × (X ∩ Y ).

The conclusion that the sets A × (X ∩ Y ) and (A × B) ∩ (A × c ) are equal now

follows, since each is a subset of the other. 􀀀
Theorem 
(i) For all sets A, B and X, A ⊆ B implies (A × X) ⊆ (B × X).

(ii) If X is non-empty, then (A × X) ⊆ (B × X) implies A ⊆ B
Exercises 
1. (Kuratowski’s definition† of the ordered pair.) If (x, y) is defined by

(x, y) = {{x}, {x, y}}, show that

(x, y) = (a, b) if and only if x = a and y = b.

2. In each of the following cases list the elements of X × Y , and draw a

‘coordinate grid’ diagram similar to figure 3.15:

(i) X = {1, 2, 3, 4} Y = {a, b}

(ii) X = {1, 2} Y = {a, b, c, d, e}

3. Let A = {1, 2, 3, 4}, B = {3, 4, 5}, X = {a, b}, Y = {b, c, d}. List the

elements of each of the following sets.

(i) (A ∩ B) × (X ∩ Y )

(ii) (A × X) ∩ (B × Y )

(iii) (A × Y ) ∩ (B × X)

(iv) (A ∩ X) × Y

(v) (A ∩ B) × (X ∪ Y )

(vi) (A × X) ∪ (B × Y ).

4. Let A = {a, b} and X = {1, 2, 3}.
(i) List all the non-empty subsets of A and all the non-empty subsets

of X.

(ii) List all the non-empty subsets of A × X which are of the form

B × Y for some B ⊆ A and some Y ⊆ X.

(iii) Write down a subset of A × X that is not of the form B × Y for

some B ⊆ A and some Y ⊆ X.

5. Prove the identities omitted from the proof of theorem 3.7. That is, for all

sets A, X and Y :

(i) (X ∩ Y ) × A = (X × A) ∩ (Y × A)

(ii) A × (X ∪ Y ) = (A × X) ∪ (A × Y )

(iii) (X ∪ Y ) × A = (X × A) ∪ (Y × A).

6. Using theorem 3.7 and the laws for the algebra of sets, show that, for all

sets A, B, X and Y ,

(i) (A ∩ B) × (X ∩ Y ) = (A × X) ∩ (A × Y ) ∩ (B × X) ∩ (B × Y )

(ii) (A ∪ B)× (X ∪ Y ) = (A × X) ∪ (A × Y ) ∪ (B × X) ∪ (B × Y ).

11. (i) Prove that, for all sets A, B, X and Y ,

(A ∩ B) × (X ∩ Y ) = (A × X) ∩ (B × Y )

= (A × Y ) ∩ (B × X).
7. Prove each of the following identities, and draw diagrams to illustrate

each:

(i) (A − B) × X = (A × X) − (B × X)

(ii) (A − B) × (X − Y ) = (A × X) − [(A × Y ) ∪ (B × X)]
                                   .
