College of computer technology
Introduction to database
 Information network department
Lecture 6

:::

INTEGRITY RULES
Relational database integrity rules are very important to good database design. Many (but by no means all) RDBMS enforce integrity rules automatically. Those rules are:

1- ENTITY INTEGRITY

 All primary key entries are unique, and no part of primary key may be null. Each row will have a unique identity, and foreign key values can properly reference primary key values, for example... No invoice can have a duplicate number, nor can it be null. In short, all invoices are uniquely identified by their invoice number.

2- REFERENTIAL INTEGRITY
 A foreign key may have either a null entry, as long as it is not a part

 of its table's primary key, or an entry that matches the primary key
 value in a table to which it is related.(every non –null foreign key
 value must reference an existing primary key value).It is possible for
 an attribute not to have corresponding value, but it will be impossible
 to have an invalid entry. for example, A Customer might not yet have
 an assigned sales representative(number),but it will be impossible to
 have an invalid sales representative(number).as in figure below:
[image: image28.jpg]Information

All information in a relational database must be logically rep-
resented as column values in rows within tables.

Guaranteed Access

Every value in a table is guaranteed to be accessible through a
combination of table name, primary key value, and column
name.

Systematic Treatment of Nulls

Nulls must be represented and treated in a systematic way,
independent of data type.

Dynamic On-Line Catalog Based on
the Relational Model

The metadata must be stored and managed as ordinary data,
that is, in tables within the database. Such data must be avail-
able to authorized users using the standard database relational
language.

Comprehensive Data Sublanguage

The relational database may support many languages. How-
ever, it must support one well defined, declarative language
with support for data definition, view definition, data manipu-
lation (interactive and by program), integrity constraints,
authorization, and transaction management (begin, commit,
and rollback).

View Updating

Any view that is theoretically updatable must be updatable
through the system.

High-Level Insert, Update and Delete

The database must support set-level inserts, updates, and
deletes.

Physical Data Independence

Application programs and ad hoc facilities are logically unaf-
fected when physical access methods or storage structures are
changed.

Logical Data Independence

Application programs and ad hoc facilities are logically unaf-
fected when changes are made to the table structures that
preserve the original table values (changing order of column or
inserting columns).

10

Integrity Independence

All relational integrity constraints must be definable in the rela-
tional language and stored in the system catalog, not at the
application level.

11

Distribution Independence

The end users and application programs are unaware and
unaffected by the data location (distributed vs. local
databases).

12

Nonsubversion

If the system supports low-level access to the data, there must
not be a way to bypass the integrity rules of the database.

Rule Zero

All preceding rules are based on the notion that in order for a
database to be considered relational, it must use its relational
facilities exclusively to manage the database.

 To avoid nulls, some designers use special codes, known as flags, to

 indicate the absence of some value.

[image: image2.jpg]3.4

Table name: CUSTOMER Database name: Ch03_InsureCo
Primary key: CUS_CODE

Foreign key: AGENT_CODE

CUS_CODE [CUS LNAME [CUS_FNAME [CUS INTIAL | CUS_AREACODE CUS_PHONE| CUS INSURE_TYFE | CUS_INSURE_AMT [CUS_RENEW_DATE | AGENT_CODE]

I Remos Afred

10011, Dunne Leana

A 515

52573

Table name: AGENT
Primary key: AGENT_CODE

Foreign key: none
AGENT_CODE | AGENT_AREACODE | AGENT_PHONE | AGENT_LNAME | AGENT_YTD_SLS |
501|713 R 132735 75
[882-1244 13896735,
e —[123:5588 |

To avoid nulls, some designers use special codes, known as flags, to indicate the absence of some value. Using Figure
3.4 as an example, the code -99 could be used as the AGENT_CODE entry of the fourth row of the CUSTOMER table
to indicate that customer Paul Olowski does not yet have an agent assigned to him. If such a flag is used, the AGENT
table must contain a dummy row with an AGENT_CODE value of -99. Thus, the AGENT table’s first record might
contain the values shown in Table 3.5.

TABLE
3.5

AGENT_CODE

A Dummy Variable Value Used as a Flag

AGENT_AREACODE AGENT PHONE

000-0000

AGENT INAME

AGENT YTD/SALES

Chapter 4, Entity Relationship (ER) Modeling, discusses several ways in which nulls may be handled.

Other integrity rules that can be enforced in the relational model are the NOT NULL and UNIQUE constraints. The
NOT NULL constraint can be placed on a column to ensure that every row in the table has a value for that column.
The UNIQUE constraint is a restriction placed on a column to ensure that no duplicate values exist for that column.

3.4 RELATIONAL SET OPERA

The data in relational tables are of limited value unless the data can be manipulated to generate useful information. This
section describes the basic data manipulation capabilities of the relational model. Relational algebra defines the
theoretical way of manipulating table contents using the eight relational operators: SELECT, PROJECT, JOIN,
INTERSECT, UNION, DIFFERENCE, PRODUCT, and DIVIDE. In Chapter 7, Introduction to Structured Query
Language (SQL), you will learn how SQL commands can be used to accomplish relational algebra operations.

THE DATA DICTIONARY AND THE SYSTEM CATALOG
Data dictionary provides a detailed description of all tables found within the user/designer-created database. It contains the attribute names and characteristics for each table in the system. In short it contains metadata
As in table below

[image: image3]
System catalog contains metadata .the system catalog can be described as detailed system data dictionary that describes all objects within the database, including data about table name, the table's creator and creation date, the number of columns in each table, the data type corresponding to each column, index filenames, index creators, authorized users, and access privileges. Current relational database software generally provides only a system catalog, from which the designer's data dictionary information may be derived.
 In effect, the system catalog automatically produces database documentation. As new tables are added to the database, that documentation also allows the RDBMS to check for and eliminate homonyms and synonyms.

Homonyms indicate the use of the same attribute name to label different attributes. For example, you might use C-NAME to label a customer name attribute in a CUSTOMER table and also use C-NAME to label a consultant name attribute in a CONSULTANT table.
Synonym is the opposite of homonym and indicates the use of different names to describe the same attribute.
RELATIONSHIPS WITHIN THE RELATIONAL DATABASE
1- THE 1:M RELATIONSHIP

It is the relational database norm

[image: image4]

[image: image5]

[image: image6]

[image: image7]
2- THE 1:1 RELATIONSHIP
In this relationship ,one entity can be can be related to only one other entity, and vice versa. It should be rare in any relational database design.
[image: image8]

[image: image9]
3- THE M:N RELATIONSHIP

A many-to-many relationship is not supported directly in the relational environment. However, this relationship can be implemented by creating anew entity in 1: M relationships with the original entities.

[image: image10]

[image: image11]
- The tables create many redundancies(STU_NUM).
- Given this structure ,the relational operations become very complex.
This problem can easily be avoided by creating a composite entity also referred to as a bridge entity or an associative entity.

[image: image12]

[image: image13]

[image: image14]
DATA REDUNDANCY
Redundancy exists when the same data are stored unnecessarily at different places.

Data anomaly develops when all of the required changes in the redundant data are not made successfully.

[image: image15]
[image: image16.jpg]bl aame: (WOICE [
Py ey IV NUNBER Py ey NV NUMBER + UNE NUMBER

Forig ey CUS_CODE focin by INY NUMBER, PROD CODE
(e oo W (7 s v | o e[e s []

e

Vomcooe L e
Pt e e
P e
pryein e e

s you e the sl transactons n Figure 3.30. oo it reasosbly suppose that he productpric bl to
the cusomer e deve from the PRODUCT tble because thats wherethe poductdfaaesore Bu why doestha
srne produt price ccar again n th LINE tale? ot thit dota recndancy? sy appears (b B this
e, he pwtentroduanc s il o th sy’ s Copsing the roductprie o he PRODUCT table

LINE_PRICE and PROD_PRICE are redundant and it is used to maintain the historical accuracy of the transactions.

LINE_NUMBER in LINE table is redundant .But given its automatic generation ,the redundancy is not a source of anomalies, and the order of the retrieved invoicing data will always match the order in which the data were entered. if product codes are used as part of the primary key, indexing will arrange those product codes as soon as the voice is completed And the data are stored.
INDEXES
Index is an orderly arrangement used to logically access rows in a table and it is composed of an index key and a set of pointers. Each key points to the location of the data identified by the key.

[image: image17.jpg]customer’s last name. Also, an index key can be composed of one or more attributes. For example, in Figure 3.30,
you can create an index on VEND_CODE and PROD_CODE to retrieve all rows in the PRODUCT table ordered by
vendor, and within vendor, ordered by product.

' Indexes play an important role in DBMSs for the implementation of primary keys. When you define a table’s primary
key, the DBMS automatically creates a unique index on the primary key column(s) you declared. For example, in Figure
3.30, when you declare CUS_CODE to be the primary key of the CUSTOMER table, the DBMS automatically creates
a unique index on that attribute. A unique index, as its name implies, is an index in which the index key can have
only one pointer value (row) associated with it. (The index in Figure 3.32 is not a unique index because the
PAINTER_NUM has multiple pointer values associated with it. For example, painter number 123 points to three
rows—1, 2, and 4—in the PAINTING table.)

A table can have many indexes, but each index is associated with only one table. The index key can have multiple
attributes (composite index). Creating an index is easy. You learn in Chapter 7 that a simple SQL command produces
any required index.

RELATIONAL DA BASE RULES

In 1985, Dr. E. F. Codd published a list of 12 rules to define a relational database system.2 The reason Dr. Codd
published the list was his concern that many vendors were marketing products as “relational” even though those
products did not meet minimum relational standards. Dr. Codd’s list, shown in Table 3.8, serves as a frame of reference
for what a truly relational database should be. Bear in mind that even the dominant database vendors do not fully
support all 12 rules.

2 Codd, E., *Is Your DBMS Realy Relational?” and “Does Your DBMS Run by the Rules?” Computerworld, October 14 and October 21, 1985

DBMS use indexes for many different purposes:

· an index can be used to retrieve data more efficiently .
· indexes can also be used by a DBMS to retrieve data ordered by a specific attribute or attributes.

· An index key can be composed of one or more attributes.

· Indexes play an important role in DBMSs for the implementation of primary keys. when you define a table's primary key, the DBMS automatically creates a unique index on the primary key column you declared. A unique index, is an index in which the index key can have only one pointer value(row) associated with it.
· A table can have many indexes, but each index is associated with only one table.

· The index key can have multiple attributes (composite index).

CODD'S RELATIONAL DATABASE RULES
In 1985, Dr. E. F. Codd published a list of 12 rules to define a relational database system.

[image: image18]
[image: image1.jpg]3.4

Table name: CUSTOMER Database name: Ch03_InsureCo
Primary key: CUS_CODE

Foreign key: AGENT_CODE

CUS_CODE [CUS LNAME [CUS_FNAME [CUS INTIAL | CUS_AREACODE CUS_PHONE| CUS INSURE_TYFE | CUS_INSURE_AMT [CUS_RENEW_DATE | AGENT_CODE]

I Remos Afred

10011, Dunne Leana

A 515

52573

Table name: AGENT
Primary key: AGENT_CODE

Foreign key: none
AGENT_CODE | AGENT_AREACODE | AGENT_PHONE | AGENT_LNAME | AGENT_YTD_SLS |
501|713 R 132735 75
[882-1244 13896735,
e —[123:5588 |

To avoid nulls, some designers use special codes, known as flags, to indicate the absence of some value. Using Figure
3.4 as an example, the code -99 could be used as the AGENT_CODE entry of the fourth row of the CUSTOMER table
to indicate that customer Paul Olowski does not yet have an agent assigned to him. If such a flag is used, the AGENT
table must contain a dummy row with an AGENT_CODE value of -99. Thus, the AGENT table’s first record might
contain the values shown in Table 3.5.

TABLE
3.5

AGENT_CODE

A Dummy Variable Value Used as a Flag

AGENT_AREACODE AGENT PHONE

000-0000

AGENT INAME

AGENT YTD/SALES

Chapter 4, Entity Relationship (ER) Modeling, discusses several ways in which nulls may be handled.

Other integrity rules that can be enforced in the relational model are the NOT NULL and UNIQUE constraints. The
NOT NULL constraint can be placed on a column to ensure that every row in the table has a value for that column.
The UNIQUE constraint is a restriction placed on a column to ensure that no duplicate values exist for that column.

3.4 RELATIONAL SET OPERA

The data in relational tables are of limited value unless the data can be manipulated to generate useful information. This
section describes the basic data manipulation capabilities of the relational model. Relational algebra defines the
theoretical way of manipulating table contents using the eight relational operators: SELECT, PROJECT, JOIN,
INTERSECT, UNION, DIFFERENCE, PRODUCT, and DIVIDE. In Chapter 7, Introduction to Structured Query
Language (SQL), you will learn how SQL commands can be used to accomplish relational algebra operations.

[image: image19.jpg]TABLE
3.6

CUSTOMER

A Sample Data Dictionary

CUS_CODE

Customer account code

CHAR(5)

1000099999

Some RDBMSs permit the use of a MONEY or CURRENCY data type.

CUS_LNAME Customer last name VARCHAR(20)
CUS_FNAME Customer first name VARCHAR(20) | Xxooooxxx Y
CUS_INITIAL Customer initial CHAR(1) X
CUS_RENEW_DATE | Customer insurance DATE dd-mmm-yyyy
renewal date
AGENT_CODE Agent code CHAR(3) 999 FK AGENT CODE
AGENT AGENT_CODE Agent code CHAR(3) 999 X PK
AGENT_AREACODE | Agent area code CHAR(3) 999 2
AGENT_PHONE Agent telephone number | CHAR(8) 999-9999 i1
AGENT_LNAME Agent last name VARCHAR(20) | Xsoxxxxxx i
AGENT_YTD_SLS Agent year-to-date sales NUMBER(9,2) | 9,999,999.99 ¥
FK = Foreign key
PK = Primary key
CHAR = Fixed character length data (1—255 characters)
VARCHAR = Variable character length data (1—2,000 characters)
NUMBER = Numeric data (NUMBER(9,2)) is used to specify numbers with two decimal places and up to nine digits, including the decimal places.

Note: Telephone area codes are always composed of digits 0—9. Because area codes are not used arithmetically, they are most efficiently stored as character data. Also,
the area codes are always composed of three digits. Therefore, the area code data type is defined as CHAR(3). On the other hand, names do not conform to some standard
length. Therefore, the customer first names are defined as VARCHAR(20), thus indicating that up to 20 characters may be used to store the names. Character data are
shown as left-justified.

[image: image20.jpg]FIGURE As you examine the PAINTER and PAINTING table contents

3.18 in Figure 3.19, note the following features:

e Each painting is painted by one and only one
painter, but each painter could have painted many
paintings. Note that painter 123 (Georgette P. Ross)
has three paintings stored in the PAINTING table.

e There is only one row in the PAINTER table for any
given row in the PAINTING table, but there may be
‘many rows in the PAINTING table for any given row
in the PAINTER table.

FIGURE
3.19

Table name: PAINTER

Primary key: PAINTER_NUM Database name: Ch03_Museum
Foreign key: none
PAINTER_NUM | PAINTER_LNAME | PAINTER_FNAME [PAINTER_INITIAL
123/Ross | Georgette =t 5
126ters i 5

Table name: PAINTING

Primary key: PAINTING_NUM

Foreign key: PAINTER_NUM

PAINTING_NUM | PAINTING_TITLE PAINTER_NUM
1338 Dawn Thunder
1338 Vanila N

Hosty Ext X
1342 Plastic Paraciss 128

The one-to-many (1:M) relationship is easily implemented in the relational model by putting the primary key of
the “17 sidle in the table of the “many” side as a foreign key.

The 1:M relationship is found in any database environment. Students in a typical college or university will discover that
each COURSE can generate many CLASSes but that each CLASS refers to only one COURSE. For example, an
Accounting Il course might yield two classes: one offered on Monday, Wednesday, and Friday (MW from 10:00 a.m.
to 10:50 a.m. and one offered on Thursday (Th) from 6:00 p.m. to 8:40 p.m. Therefore, the 1:M relationship
between COURSE and CLASS might be described this way:

e Each COURSE can have many CLASSes, but each

FIGURE CLASS references only one COURSE.
3.20 o There will be only one row in the COURSE table for
any given row in the CLASS table, but there can be

‘many rows in the CLASS table for any given row in
the COURSE table.

Figure 3.20 maps the ERM for the 1:M relationship between
COURSE and CLASS.

[image: image21.jpg]The 1:M relationship between COURSE and CLASS is further illustrated in Figure 3.21.

FIGURE

3.21
Table name: COURSE
Primary key: CRS_CODE Database name: Ch03_TinyCollege
Foreign key: none

CRS_CODE | DEPT_CODE CRS_DESCRPTION [cRS_cRepiT

pRCTAMGTIACOT S g) - |l
laccT212|acet Accourtingl 3 3
cs220 os Intro.to Microcomputing. 3l
|cis-a20 s 4
aM-261 as 5 3
lom3e2 os - 4l

Table name: CLASS
Primary key: CLASS_CODE
Foreign key: CRS_CODE

CLASS CODE | CRS_CODE | CLASS_SECTION CLASS TME [CLASS ROOM PROF_NUM

10012 laceran 1 7 _|MAF 8:00-8:50 a.m. }_Bgsan‘ | 105}
10013 [accran |2 [MAF 300-850am. |BUS200
10014 ACCT211 |3 |BUS252
10015 lacer212 |1 [MAF 10:00-10:50 am.|BUS311

40pm._ |BuUs252
v S0am. |KLR203
2 _MAF 900250 am. | KLR211
0

Using Figure 3.21, take a minute to review some important terminology. Note that CLASS_CODE in the CLASS table
uniquely identifies each row. Therefore, CLASS_CODE has been chosen to be the primary key. However, the
combination CRS_CODE and CLASS_SECTION will also uniquely identify each row in the class table. In other words,
the composite key composed of CRS_CODE and CLASS_SECTION is a candidate key. Any candidate key must have
the not null and unique constraints enforced. (You will see how this is done when vou learn SQL in Chapter 7.)

For example, note in Figure 3.19 that the PAINTER table’s primary key, PAINTER_NUM, is included in the PAINTING

table as a foreign key. Similarly, in Figure 3.21, the COURSE table's primary key, CRS_CODE, is included in the
CLASS table as a foreign key.

m THE 1:1 RELATIONSHIP

As the 1:1 label implies, in this relationship, one entity can be related to only one other entity, and vice versa. For
example, one department chair—a professor—can chair only one department and one department can have only one
department chair. The entities PROFESSOR and DEPARTMENT thus exhibit a 1:1 relationship. (You might argue that
not all professors chair a department and professors cannot be required to chair a department. That is, the relationship
between the two entities is optional. However, at this stage of the discussion, you should focus your attention on the
basic 1:1 relationship. Optional relationships will be addressed in Chapter 4.) The basic 1:1 relationship is modeled
in Figure 3.22, and its implementation is shown in Figure 3,23,

As you examine the tables in Figure 3.23, note that there are several important features:

¢ Each professor is a Tiny College employee. Therefore, the professor identification is through the EMP_NUM.
(However, note that not all employees are professors—there’s another optional relationship.)

[image: image22.jpg]FIGURE
322

SR ittt

FIGURE
3.23

Table name: PROFESSOR
Primary key: EMP_NUM
Foreign key: DEPT_CODE

The 1:1 PROFESSOR chairs DEPARTMENT rela-
tionship is implemented by having the EMP_NUM
foreign key in the DEPARTMENT table. Note that the
1:1 relationship is treated as a special case of the 1:M
relationship in which the “many’ side is restricted to a
single occurrence. In this case, DEPARTMENT con-
tains the EMP_NUM as a foreign key to indicate that
it is the department that has a chair.

Database name: Ch03_TinyCollege

EMP_NUM | DEPT_CODE | PROF_OFFICE | PROF_EXTENSION [PROF_HIGH_DEGREE

_103/HST |DRE 156 6783 [PhD. I
_104jENG DRE 102 ma
105 ACCT. KLR 228D PhD.
108|MKTMGT | KLR126 PhD.
110[BioL [AAK 160 PhD.
| t1aaccr KR 211 |
| issvati|aak2nn 2 |
180/ENG DRE 102
_182cs KLR 203E

~191|MKTMGT _|KLR 4098

195PSYCH | AAK 297

2651

14683 —
2000 ol
5514 PhD. |
5665 PhO.

6783 _IMA

2851 A :MBA

l2278 __|eno. |

The 1:M DEPARTMENT employs PROFESSOR relationship is implemented through
the placement of the DEPT_CODE foreign key in the PROFESSOR table.

Table name: DEPARTMENT
Primary key: DEPT_CODE
Foreign key: EMP_NUM

The 1:1 PROFESSOR chairs DEPARTMENT relationship

is it

mplemented through the placement of the

EMP_NUM foreign key in the DEPARTMENT table.

'DEPT_CODE DEPT_NAME 'SCHOOL _CODE [EMP_NUM

DEPT_ADDRESS | DEPT_EXTENSION

AcCT Accourting BUS 114|KLR 211,Box 52 3118 _
ART Fine Arts 2351 [435/B80 185,B0x 128 2278 |
BI0L Biology ASSCl_ 387 AAK 230, Box 415|117

as Computer Info. Systems | BUS 209/ KLR 333, Box 56 |
{ECoNFN [299 KLR 284, Box 63

|DRE 102, B0x223

[image: image23.jpg]DEPARTMENT employs PROFESSOR relationship. This is a good example of how two entities can participate
in two (or even more) relationships simultaneously.

Also note that the PROFESSOR table contains the DEPT CODE foreign key to implement the 1:M

If you open the Ch03_TinyCollege database in the Student Online Companion, you'll see that the
STUDENT and CLASS entities still use PROF_NUM as their foreign key. PROF_NUM and EMP_NUM are labels

for the same attribute, which is an example of the use of synonyms—different names for the same attribute.
These synonyms will be eliminated in future chapters as the Tiny College database continues to be improved.

The preceding “PROFESSOR chairs DEPARTMENT” example illustrates a proper 1:1 relationship. In fact, the use
of a 1:1 relationship ensures that two entity sets are not placed in the same table when they should ot be.

However, the existence of a 1:1 relationship sometimes means that the entify components were not defined properly.
It could indicate that the two entities actually belong in the same table!

As rare as 1:1 relationships should be, certain conditions absolutely require their use. For example, suppose you
manage the database for a company that employs pilots, accountants, mechanics, clerks, salespeople, service
personnel, and more. Pilots have many attributes that the other employees don’t have, such as licenses, medical
certificates, flight experience records, dates of flight proficiency checks, and proof of required periodic medical checks.
If you put all of the pilot-specific attributes in the EMPLOYEE table, you will have several nulls in that table for all
employees who are not pilots. To avoid the proliferation of nulls, it is better to split the pilot attributes into a separate
table (PILOT) that is linked to the EMPLOYEE table in a 1:1 relationship. Because pilots have many attributes that are

shared by all employees—such as name, date of birth, and date of first employment—those attributes would be stored
in the EMPLOYEE table

Ifyou look at the Ch03_AviaCo database in the Student Online Companion, you will see the implementation

of the 1:1 PILOT to EMPLOYEE relationship. This type of relationship will be examined in detail in Chapter 6,
Advanced Data Modeling.

B e i

ELATIONSHIP

A many-to-many (M:N) relationship is not supported directly in the relational environment. Houwever, M:N relationships
can be implemented by creating a new entity in 1:M relationships with the original entities,

a— To explore the many-to-many (M:N) relationship, consider a
i rather typical college environment in which each STUDENT
can take many CLASSes, and each CLASS can contain

many STUDENTs. The ER model in Figure 3.24 shows this
M:N relationship.

Note the features of the ERM in Figure 3.24.

[image: image24.jpg]e Each CLASS can have many STUDENTS, and each STUDENT can take many CLASSes.

e There can be many rows in the CLASS table for any given row in the STUDENT table, and there can be many
rows in the STUDENT table for any given row in the CLASS table.

To examine the M:N relationship more closely, imagine a small college with two students, each of whom takes three
classes. Table 3.7 shows the enrollment data for the two students.

Sample Student Enroliment Data

STUDENT STUAST NAME SELECTED CLASSES

Accounting 1, ACCT-211, code 10014

Intro to Microcomputing, CIS-220, code 10018
Intro to Statistics, QM-261, code 10021
Accounting 1, ACCT-211, code 10014

Intro to Microcomputing, CIS-220, code 10018
Intro to Statistics, QM-261, code 10021

Smithson

FIGURE
3,25

Table name: STUDENT
Primary key: STU_NUM Database name: Ch03_CollegeTry

Foreign key: none

STU_NUM | STU_LNAME | CLASS_CODE |
321452/ Bowser 10014

Table name: CLASS
Primary key: CLASS_CODE
Foreign key: STU_NUM

CLASS_CODE | STU_NUM | CRS_CODE | CLASS SECTION | CLASS TME [CLASS_ROOM
o012 i 3 | sz
10014 24257 ACCT-211_|3 :
10018 | msmlas2o 2 ! 00-8:50 am. | KLR?

10018 ss7jos20 (2 |MAF 900850 am. [KLR211
10021 | sotes2lomast |1 ~|MAF 800850 am. KLR20D
10021 | saecszjomzer |1

Although the M:N relationship is logically reflected in Figure 3.24, it should not be implemented as shown in Figure
3.25 for two good reasons:

e The tables create many redundancies, For example, note that the STU_NUM values occur many times in the
STUDENT table. In a real-world situation, additional student attributes such as address, classification, major,
and home phone would also be contained in the STUDENT table, and each of those attribute values would be
repeated in each of the records shown here. Similarly, the CLASS table contains many duplications: each
student taking the class generates a CLASS record. The problem would be even worse if the CLASS table
included such attributes as credit hours and course description. Those redundancies lead to the anomalies
discussed in Chapter 1.

o Given the structure and contents of the two tables, the relational operations become very complex and are
likely to lead to system efficiency errors and output errors.

|

[image: image25.jpg]Fortunately, the problems inherent in the many-to-many (M:N) relationship can easily be avoided by creating a
] composite entity (also referred to as a bridge entity or an associative entity). Because such a table is used to link
: the tables that originally were related in a M:N relationship, the composite entity structure includes—as foreign
keys—at least the primary keys of the tables that are to be linked. The database designer has two main options when
defining a composite table's primary key: use the combination of those foreign keys or create a new primary key.

Remember that each entity in the ERM is represented by a table. Therefore, you can create the composite ENROLL
table shown in Figure 3.26 to link the tables CLASS and STUDENT. In this example, the ENROLL table’s primary key
is the combination of its foreign keys CLASS_CODE and STU_NUM. But the designer could have decided to create
a single-attribute new primary key such as ENROLL_LINE, using a different line value to identify each ENROLL table
row uniquely. (Microsoft Access users might use the Autonumber data type to generate such line values automatically.)

FIGURE
‘ 3.26

{ Table name: STUDENT

Primary key: STU_NUM Database name: Ch03_CollegeTry2
Foreign key: none

STU_NUM | STU_LNAME
| 921452 Bows:
324257 St

Primary key: CLASS_CODE + STU_NUM
Foreign key: CLASS_CODE, STU_NUM

STU_NUM | ENROLL_GRADE

!
\ 1 Table name: ENROLL
]
:
]
!

| Table name: CLASS
! Primary key: CLASS_CODE
; Foreign key: CRS_CODE
|

CLASS,_CODE | CRS_CODE [CLASS SECTION | _ CLASS_TME | CLASS_ROOM | PROF_NUM
10014 |AccT-211 |3 [TTh2:30-345 pm. BUS252 342
H |10018) MAF 3:00-8:50 am. |KLR211 114)
| [10021 i | MAF 8:00-8:50 a.m, | KLR200 | 114]

Because the ENROLL table in Figure 3.26 links two tables, STUDENT and CLASS, it is also called a linking table.
In other words, a linking table is the implementation of a composite entity.

S

In addition to the linking attributes, the composite ENROLL table can also contain such relevant attributes as the
grade earned in the course. In fact, a composite table can contain any number of attributes that the designer
wants to track. Keep in mind that the composite entity, although it is implemented as an actual table, is

conceptually a logical entity that was created as a means to an end: to eliminate the potential for multiple
redundancies in the original M:N relationship.

The linking table (ENROLL) shown in Fig-ure 3.26 yields the required M:N to 1:M conversion, Observe that the
composite entity represented by the ENROLL table must contain at least the primary keys of the CLASS and

[image: image26.jpg]STUDENT tables (CLASS_CODE and STU_NUM, respectively) for which it serves as a connector. Also note that the
STUDENT and CLASS tables now contain only one row per entity. The linking ENROLL table contains multiple
occurrences of the foreign key values, but those controlled redundancies are incapable of producing anomalies as long
as referential integrity is enforced. Additional attributes may be assigned as needed. In this case, ENROLL_GRADE is
<clocted to satisfy a reporting requirement. Also note that the ENROLL table’s primary key consists of the two
ttributes CLASS_CODE and STU_NUM because both the class code and the student number are needed to define
2 particular student’s grade. Naturally, the conversion is reflected in the ERM, too. The revised relationship is shown
in Figure 3.27.

As you examine Figure 3.27, note that the composite entity named ENROLL represents the linking table between
STUDENT and CLASS.

The 1:M relationship between COURSE and CLASS was first illustrated in Figure 3.20 and Figure 3.21. With the help
of this relationship, you can increase the amount of available information even as you control the database’s
redundancies. Thus, Figure 3.27 can be expanded to include the 1:M relationship between COURSE and CLASS
shown in Figure 3.28. Note that the model is able to handle multiple sections of a CLASS while controlling
redundancies by making sure that all of the COURSE data common to each CLASS are kept in the COURSE table.

The relational diagram that corresponds to the ERD in Figure 3.28 is shown in Figure 3.29.

0

.

=

=

=

=
=

=

=
=

=
=

=

ENROLL GRADE | CRS_DESCRIPTION

¥ cuass_cobE
CRS_CODE
CLASS_SECTION
CLASS_TIME
CLASS ROOM
PROF_NUM

STU_PHONE
PROF_NUM 7.

[image: image27.jpg]FIGURE

3.30
Table name: CUSTOMER
Primary key: CUS_CODE Database name: Ch03_SaleCo
Foreign key: none
% o0 | i LHAVE [CUS_FRAE | CUS INTIAL | CUS_AREACODE | LS PHONE
10010|Rames Alfred A 615 8442573 |
10011 | Dunne Leona K {713 8341238 |
10012 Smth Kathy w [615 894.2285
10013 Olowski Paul IF 1615 894-2180
10014|Orlando Myron 615 2221672
10015 O'Brian Amy & 713 442.3381
[10016 Brown James IS 515 2971228
10017 Wiliams George | 615 12302556
mmﬁfnes Anne [713 [3827185 |
10018 Smith Ofette K (615 |207-3808 |
Table name: INVOICE Table name: LINE
Primary key: INV_NUMBER Primary key: INV_NUMBER + LINE NUMBER
Foreign key: CUS_CODE Foreign keys: INV_NUMBER, PROD_CODE
[FY_foER [GUS CODE | WV _DATE | [V NOVEER || UNE NUMBER | PROD_CODE INE_UNTS | UINE_PRICE
1001 10014|_08-Mar-08) 1001 1[1232100Y 1 189.99)
002 10011| OgMar-08| | 1001 2|SREGS7UG | 3| 238|
1003 10012 oBMer0s [1002] 1|GER-34256 2| 1863
f004] __10011| 03-Mar-08] 1003 1| zzx32450 1 573
1003 2| SRE-657UC 1 299
1003 3(001278-48 1 1295|
1004 1]001278-48 1 1235
1004] 2[SRE-657UG 2| 299
Table name: PRODUCT
Primary key: PROD_CODE
Foreign key: none
PROD_CODE| PROD_DESCRPT "PROD_PRICE | PROD_ON_HAND [VEND_CODE
001278-A8_| Claw hammer 1285 2] 232
123.21U0Y | Houselte chain saw, 16-n. bar 189.99 4| 23|
GER-34256 | Sledge hammer, 16-1b. head 1863 6l 231
|SRE657UG _ Ret-tai fie 299 15 232
214132450 | Steeltape, 12-f. lengih 73] 8] 235
FIGURE
3.31

i

Us_CODE

INV_DATE

CUS_AREACODE
CUS_PHONE

9 PROD_CODE |
PROD_DESCRIPT
PROD_PRICE
PROD_ON_HAND
'VEND_CODE

PROD_CODE
UINE_UNITS
UNE_PRICE

%< you examine the sales transactions in Figure 3.30, you might reasonably suppose that the product price billed to

- customer is derived from the P

R S

RODUCT table because that's where the

=me product price occur again in the LINE table? Isn’t that a data redun:

e the apparent redundancy is crucial to the system’s success. Copying the product price from

s ——

product data are stored. But why does that
dancy? It certainly appears to be. But this
the PRODUCT table

—— S

