<u>The Solution of the First Term Examination</u> (2008-2009)

<u>*Q1*</u>): The pulsed waveform of Fig. (b) is applied to the *RESET* terminal of the astable multivibrator circuit of Fig. (a). *Draw the output waveform*.

Solution:

The circuit shown in Fig. (a) is an astable multivibrator with a 500 Hz symmetrical waveform applied to its *RESET* terminal. The *RESET* terminal is alternately *HIGH* and *LOW* for *1.0 ms*. When the *RESET* input is *LOW*, the output is forced to the *LOW* state. When the *RESET* input is *HIGH*, an astable waveform appears at the output. The *HIGH* and *LOW* time periods of the astable multivibrator are determined as follows:

HIGH time = $0.69 \times 14.5 \times 10^{3} \times 0.01 \times 10^{-6} = 0.1$ ms. LOW time = $0.69 \times 14.5 \times 10^{3} \times 0.01 \times 10^{-6} = 0.1$ ms.

The astable output is thus a 5 kHz symmetrical waveform. Every time the *RESET* terminal goes to *HIGH* for *1.0 ms*, five cycles of 5 kHz waveform appear at the output. Figure below shows the output waveform appearing at terminal 3 of the timer IC.

http://www.4shared.com/file/84894874/5e4ec9fe/The_Solution_of_the_First_Term_Examination.html

Q2): Design a 3-bit up/down synchronous counter using **T** flip-flops. It should include a control input called Up/\overline{Down} . If $Up/\overline{Down} = 0$, then the circuit should behave as a down-counter. If $Up/\overline{Down} = 1$, then the circuit should behave as an up-counter.

Solution:

The *present state – present input – next state* table will be as follows:

No.	Pre	esent Sta	ate	U/D	N	ext Sta	te	Present Input			
	Q _C	Q _B	QA	C	Q _C	Q _B	QA	T _C	T _B	T _A	
0	0	0	0	0=D	1	1	1	1	1	1	
1	0	0	0	1=U	0	0	1	0	0	1	
2	0	0	1	0	0	0	0	0	0	1	
3	0	0	1	1	0	1	0	0	1	1	
4	0	1	0	0	0	0	1	0	1	1	
5	0	1	0	1	0	1	1	0	0	1	
6	0	1	1	0	0	1	0	0	0	1	
7	0	1	1	1	1	0	0	1	1	1	
8	1	0	0	0	0	1	1	1	1	1	
9	1	0	0	1	1	0	1	0	0	1	
10	1	0	1	0	1	0	0	0	0	1	
11	1	0	1	1	1	1	0	0	1	1	
12	1	1	0	0	1	0	1	0	1	1	
13	1	1	0	1	1	1	1	0	0	1	
14	1	1	1	0	1	1	0	0	0	1	
15	1	1	1	1	0	0	0	1	1	1	

 $http://www.4shared.com/file/84894874/5e4ec9fe/The_Solution_of_the_First_Term_Examination.html$

The K-map will be as follows:

The circuit diagram of the counter will be as shown below:

http://www.4shared.com/file/84894874/5e4ec9fe/The_Solution_of_the_First_Term_Examination.html

3

<u>03</u>): Analyze the counter shown in figure below.

Solution:

From figure above we have:

$J_A = B. C$.	$K_A=1.$
$J_B = A.C + A`.C`.$	$K_{B}=1.$
$J_C = A$ `. B.	$K_C = A' + B$

The *present state – present input – next state* table will be as follows:

No.	Present State			Present Input						Next State			State
	C	В	Α	J _C	K _C	J _B	K _B	JA	K _A	С	В	Α	State
0	0	0	0	0	1	1	1	0	1	0	1	0	2
2	0	1	0	1	1	1	1	1	1	1	0	1	5
5	1	0	1	0	0	1	1	0	1	1	1	0	6
6	1	1	0	1	1	0	1	0	1	0	0	0	0
1	0	0	1	0	0	0	1	0	1	0	0	0	0
3	0	1	1	0	1	0	1	1	1	0	0	0	0
4	1	0	0	0	1	0	1	0	1	0	0	0	0
7	1	1	1	0	1	1	1	0	1	0	0	0	0

4 http://www.4shared.com/file/84894874/5e4ec9fe/The_Solution_of_the_First_Term_Examination.html The state transition diagram will be as follows:

Then the counter classification is summarized here:

- MOD 4 (0, 2, 5, 6).
- Divided by 4.
- Synchronous.
- Three-bit.
- Negative edge-triggered.
- Binary up counter.
- Self-starting counter.

http://www.4shared.com/file/84894874/5e4ec9fe/The_Solution_of_the_First_Term_Examination.html