
The Solution of First Term Examination (4th Class) 2010-2011

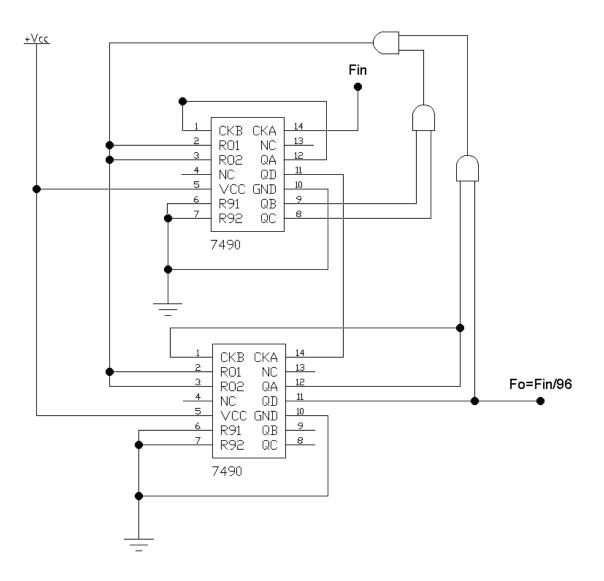
Q1) Use *T-flip-flops* to design a *Mealy* system that produces a 1 output if there have been *four or more* consecutive 1 inputs or *two or more* consecutive 0 inputs.

Solution:

We start with a state for which the last input is (0). From there, we need four consecutive (1's) to get a (1) output or another (0). Thus, on additional (0's), we loop back to state (A). On a (1), we go to (B); on a second (1), we go to (C); and on a third (1), we go to (D). In (D), additional (1's) produce a (1) output; (0's) return the system to state (A). The state diagram will be as follows:

The state table will be as follows:

Drocopt State	Next	State	Output		
Present State	X=0	X=1	X=0	X=1	
A	Α	В	1	0	
В	Α	С	0	0	
C	Α	D	0	0	
D	Α	D	0	1	


Dr. Chab A. H. AL-Hialy

Digital Electronics

Q2) Design a *MOD-96* asynchronous counter using minimum number of **74LS90s** ICs. Explain how the *MOD-96* circuit functions, based on the count sequence and decoding operations.

Solution:

The designed circuit of MOD-96 by using two ICs of **74LS90s** asynchronous counter as shown in figure below:

Q3) Table (1) gives the excitation table of a certain flip-flop having (X₁ & X₂) as its inputs. Draw the circuit excitation table of an MOD-5 synchronous counter using this flip-flop for the count sequence (0, 1, 3, 5, 6, 0, ...). If the present state is an undesired one, it should transit to (6) on application of a clock pulse. Design the counter circuit using the flip-flop whose excitation circuit is given in Table (1).

Table (1)							
Present state	Next state	Inputs					
(Q _n)	(Q _{n+1})	X ₁	X ₂				
0	0	0	0				
0	1	0	1				
1	0	1	Х				
1	1	Х	1				

Solution:

- The circuit excitation table is shown in Table (2).
- The number of flip-flops required is (3).
- X1(A) and X2(A) are the inputs of flip-flop (A), which is also the LSB flip-flop.
- X1(B) and X2(B) represent the inputs to flip-flop (B).
- X1(C) and X2(C) are the inputs to flip-flop (C), which is also the MSB flip-flop.
- The next step is to draw Karnaugh maps, one each for different inputs to the three flip-flops.
- Figures (1)(a) to (f) show the Karnaugh maps for X1(A), X2 (A), X1(B), X2(B), X1(C) and X2(C) respectively.
- The minimized expressions are as follows:

X1(A) = A.	X2(A) = A + B'C'.
X1(B) = B.	X2(B) = A + B + C.
X1(C) = C.	X2(C) = B + C.

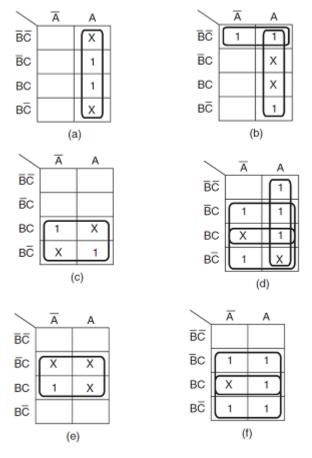
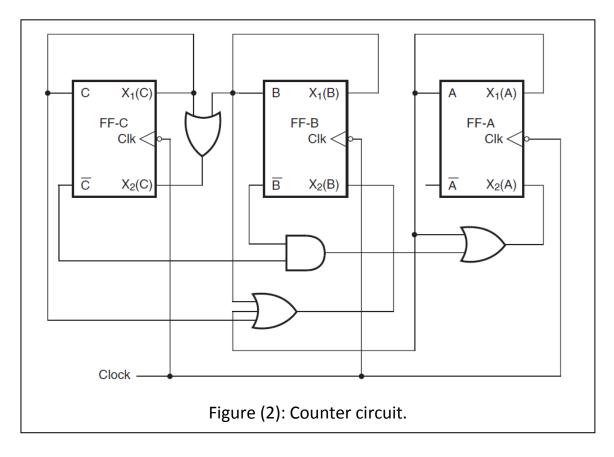

• Figure (2) shows the circuit implementation.

	Table (2)										
Present state		N	lext stat	e							
с	В	A	С	В	Α	$X_1(A)$	$X_2(A)$	$X_1(B)$	$X_2(B)$	$X_1(C)$	$X_2(C)$
0	0	0	0	0	1	0	1	0	0	0	0
0	0	1	0	1	1	Х	1	0	1	0	0
0	1	0	1	1	0	0	0	Х	1	0	1
0	1	1	1	0	1	Х	1	1	Х	0	1
1	0	0	1	1	0	0	0	0	1	x	1
1	0	1	1	1	0	1	Х	0	1	Х	1
1	1	0	0	0	0	0	0	1	Х	1	Х
1	1	1	1	1	0	1	Х	Х	1	Х	1


X = don't care condition.

Dr. Chab A. H. AL-Hialy

Digital Electronics

