Lecture 2 : Mathematical Statistics : المرحلة الرابعة مدرسة المادة: كريمة عبد الكاظم

`1

1.1 Basic probability

Probability or **chance** can be measured on a scale which runs from **zero**, which represents **impossibility**, to **one**, which represents **certainty**.

1.1.1 Terminology

A sample space, Ω , is the set of all possible outcomes of an experiment. An event $E \in \Omega$ is a subset of Ω .

Example 1 Experiment: roll a die twice. Possible events are $E_1 = \{1 \text{st face is a 6}\}, E_2 = \{\text{sum of faces} = 3\}, E_3 = \{\text{sum of faces is odd}\}, E_4 = \{1 \text{st face - 2nd face} = 3\}$. Identify the sample space and the above events. Obtain their probabilities when the die is **fair**.

Answer:

		second roll					
	1	(1,1)	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)
	2	(2,1)	(2,2)	(2,3)	(2,4)	(2,5)	(2,6)
first roll	3	(3,1)	(3,2)	(3,3)	(3,4)	(3,5)	(3,6)
	4	(4,1)	(4,2)	(4,3)	(4,4)	(4,5)	(4,6)
	5	(5,1)	(5,2)	(5,3)	(5,4)	(5,5)	(5,6)
	6	(6,1)	(6,2)	(6,3)	(6,4)	(6,5)	(6,6)

$$p(E_1) = \frac{1}{6}$$
; $p(E_2) = \frac{1}{18}$; $p(E_3) = \frac{1}{2}$; $p(E_4) = \frac{1}{12}$.

Combinations of events

Given events A and B, further events can be identified as follows.

- The **complement** of any event A, written \bar{A} or A^c , means that A does **not** occur.
- The union of any two events A and B, written $A \cup B$, means that A or B or both occur.
- The intersection of A and B, written as $A \cap B$, means that both A and B occur

Lecture 2 : Mathematical Statistics : المرحلة الرابعة مدرسة المادة: كريمة عبد الكاظم

2

1.1.2 Probability axioms

Let \mathcal{F} be the class of all events in Ω . A **probability** (measure) P on (Ω, \mathcal{F}) is a real-valued function satisfying the following three axioms:

- 1. $P(E) \ge 0$ for every $E \in \mathcal{F}$
- 2. $P(\Omega) = 1$
- 3. Suppose the events E_1 and E_2 are mutually exclusive (that is, $E_1 \cap E_2 = \emptyset$). Then

$$P(E_1 \cup E_2) = P(E_1) + P(E_2)$$

Some consequences:

- (i) P(E) = 1 P(E) (so in particular $P(\emptyset) = 0$)
- (ii) For any two events E_1 and E_2 we have the addition rule

$$P(E_1 \cup E_2) = P(E_1) + P(E_2) - P(E_1 \cap E_2)$$

Example 1: (continued)

Obtain $P(E_1 \cap E_2)$, $P(E_1 \cup E_2)$, $P(E_1 \cap E_3)$ and $P(E_1 \cup E_3)$

Answer:
$$P(E_1 \cap E_2) = P(\emptyset) = 0$$

 $P(E_1 \cup E_2) = P(E_1) + P(E_2) = \frac{1}{6} + \frac{1}{18} = \frac{2}{9}$
 $P(E_1 \cap E_3) = P(6,1), (6,3), (6,5) = \frac{3}{36} = \frac{1}{12}$
 $P(E_1 \cup E_3) = P(E_1) + P(E_3) - P(E_1 \cap E_3) = \frac{1}{6} + \frac{1}{2} - \frac{1}{12} = \frac{7}{12}$

[Notes on axioms:

- (1) In order to cope with infinite sequences of events, it is necessary to strengthen axiom 3 to
- 3'. $P(\bigcup_{i=1}^{\infty}) = \sum_{i=1}^{\infty} P(E_i)$ for any sequence (E_1, E_2, \cdots) of mutually exclusive events.
- (2) When Ω is noncountably infinite, in order to make the theory rigorous it is usually necessary to restrict the class of events \mathcal{F} to which probabilities are assigned.]

Lecture 2 : Mathematical Statistics : المرحلة الرابعة مدرسة المادة: كريمة عبد الكاظم

3

1.1.3 Conditional probability

Supose $P(E_2) \neq 0$. The conditional probability of the event E_1 given E_2 is defined as

 $P(E_1|E_2) = \frac{P(E_1 \cap E_2)}{P(E_2)}.$

The conditional probability is undefined if $P(E_2) = 0$. The conditional probability formula above yields the **multiplication rule**:

$$P(E_1 \cap E_2) = P(E_1)P(E_2|E_1)$$

= $P(E_2)P(E_1|E_2)$

Independence

Events E_1 and E_2 are said to be independent if

$$P(E_1 \cap E_2) = P(E_1)P(E_2)$$
.

Note that this implies that $P(E_1|E_2) = P(E_1)$ and $P(E_2|E_1) = P(E_2)$. Thus knowledge of the occurrence of one of the events does not affect the likelihood of occurrence of the other.

Events E_1, \ldots, E_k are pairwise independent if $P(E_i \cap E_j) = P(E_i)P(E_j)$ for all $i \neq j$. They are mutually independent if for all subsets $P(\cap_j E_j) = \prod_j P(E_j)$. Clearly, mutual independence \Rightarrow pairwise independence, but the converse is false (see question 4 of the self study exercises).

Lecture 2 : Mathematical Statistics

: المرحلة الرابعة مدرسة المادة: كريمة عبد الكاظم

4

Example 1 (continued): Find $P(E_1|E_2)$ and $P(E_1|E_3)$. Are E_1, E_2 independent?

Answer: $P(E_1|E_2) = \frac{P(E_1 \cap E_2)}{P(E_2)} = 0$, $P(E_1|E_3) = \frac{P(E_1 \cap E_3)}{P(E_3)} = \frac{1/12}{1/2} = \frac{1}{6}$ $P(E_1)P(E_2) \neq 0$ so $P(E_1 \cap E_2) \neq P(E_1)P(E_2)$ and thus E_1 and E_2 are not independent.

Law of total probability (partition law)

Suppose that B_1, \ldots, B_k are mutually exclusive and exhaustive events (i.e. $B_i \cap B_i = \emptyset$ for all $i \neq j$ and $\cup_i B_i = \Omega$).

Let A be any event. Then

$$P(A) = \sum_{j=1}^{k} P(A|B_j)P(B_j)$$

Bayes' Rule

Suppose that events B_1, \ldots, B_k are mutually exclusive and exhaustive and let A be any event. Then

$$P(B_j|A) = \frac{P(A|B_j)P(B_j)}{P(A)} = \frac{P(A|B_j)P(B_j)}{\sum_i P(A|B_i)P(B_i)}$$

Lecture 2 : Mathematical Statistics : المرحلة الرابعة مدرسة المادة: كريمة عبد الكاظم

5

Example 2: (Cancer diagnosis) A screening programme for a certain type of cancer has reliabilities P(A|D) = 0.98, $P(A|\bar{D}) = 0.05$, where D is the event "disease is present" and A is the event "test gives a positive result". It is known that 1 in 10, 000 of the population has the disease. Suppose that an individual's test result is positive. What is the probability that that person has the disease?

Answer: We require P(D|A). First find P(A).

$$P(A) = P(A|D)P(D) + P(A|\bar{D})P(\bar{D}) = 0.98 \times 0.0001 + 0.05 \times 0.9999 = 0.050093.$$

By Bayes' rule;
$$P(D|A) = \frac{P(A|D)P(D)}{P(A)} = \frac{0.0001 \times 0.98}{0.050093} = 0.002.$$

The person is still very unlikely to have the disease even though the test is positive.

Example 3: (Bertrand's Box Paradox) Three indistinguishable boxes contain black and white beads as shown: [ww], [wb], [bb]. A box is chosen at random

and a bead chosen at random from the selected box. What is the probability of that the [wb] box was chosen given that selected bead was white?

Answer: $E \equiv$ 'chose the [wb] box', $W \equiv$ 'selected bead is white'. By the partition law: $P(W) = 1 \times \frac{1}{3} + \frac{1}{2} \times \frac{1}{3} + 0 \times \frac{1}{3} = \frac{1}{2}$. Now using Bayes' rule $P(E|W) = \frac{P(E)P(W|E)}{P(W)} = \frac{\frac{1}{3} \times \frac{1}{2}}{\frac{1}{2}} = \frac{1}{3}$ (i.e. even though a bead from the selected box has been seen, the probability that the box is [wb] is still $\frac{1}{3}$).