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State Reduction: 
 The reduction of the number of flip-flops in a sequential circuit is referred to as the state 
reduction problem. State-reduction algorithms are concerned with procedures for reducing the 
number of states in a state table, while keeping the external input-output requirements 
unchanged. Since (N) flip-flops produce (2N) states, a reduction in the number of states may 
(or may not) result in a reduction in the number of flip-flops. An unpredictable effect in reducing 
the number of flip-flops is that sometimes the equivalent circuit (with fewer flip-flops) may 
require more combinational gates. 
 We will illustrate the state reduction procedure with an example. We start with a 
sequential circuit whose specification is given in the state diagram shown in Fig. (1). In this 
example, only the input-output sequences are important; the internal states are used merely to 
provide the required sequences. For this reason, the states marked inside the circles are 
denoted by letter symbols instead of their binary values. This is in constant to a binary counter, 
where the binary value sequence of the state themselves is taken as the outputs. 
  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. (1): State Diagram. 

 
 There are an infinite number of input sequences that may be applied to the circuit; each 
results in a unique output sequence. As an example, consider the input sequence 
[01010110100] starting from the initial state (a). Each input of 0 or 1 produces an output of 0 or 
1 and causes the circuit to go to the next state. the output and state sequence for the given 

1/1 

0/0 

1/0  

1/1  

1/1 

b 

1/0 

c 

0/0  

1/1 

a 

0/0  

d 

1/0  

e 

f 

g 

0/0 

0/0 

0/0 

0/0 



Dr. Ehab A. H. AL-Hialy         Digital Electronics 

2 

 

input sequence as follows: With the circuit in initial state (a), an input of 0 produces an output 
of 0 and the circuit remains in state (a). With present state (a) and input of 1, the output is 0 
and the next state is (b). With present state (b) and input of 0, the output is 0 and next state is 
(c). Continuing this process, we find the complete sequence to be as follows: 
 
State a a b c d e f f g f g a 
Input 0 1 0 1 0 1 1 0 1 0 0  

Output 0 0 0 0 0 1 1 0 1 0 0  
 
 In each column, we have the present state, input value, and output value. The next 
state is written on top of the next column. It is important to realize that in this circuit, the states 
themselves are of secondary importance because we are interested only in output sequences 
caused by input sequences. 
 Now let us assume that we have found a sequential circuit whose state diagram has 
less than seven states and we wish to compare it with the circuit whose state diagram is given 
by Fig. (1). If identical input sequences are applied to the two circuits and identical outputs 
occur for all input sequences, then the two circuits are said to be equivalent (as far as the 
input-output is concerned) and one may be replaced by the other. The problem of state 
reduction is to find ways of reducing the number of states in a sequential circuit without altering 
the input-output relationships.  
 We now proceed to reduce the number of states for this example. First, we need the 
state table; it is more convenient to apply procedures for state reduction using a table rather 
than a diagram. The state table of the circuit is listed in Table (1) and is obtained directly from 
the state diagram. 
 

Table (1) 
 State Table. 

Present 
State 

Next State Output 
x=0 x=1 x=0 x=1 

a a b 0 0 
b c d 0 0 
c a d 0 0 
d e f 0 1 
e a f 0 1 
f g f 0 1 
g a f 0 1 

 
 An algorithm for the state reduction of a completely specified state table is given here 
without proof:"Two states are said to be equivalent if, for each member of the set of 
inputs, they give exactly the same output and send the circuit either to the same state 
or to an equivalent state." When two states are equivalent, one of them can be removed 
without altering the input-output relationships. 
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 Now apply this algorithm to Table (1). Going through the state table, we look for two 
present states that go to the same next state and have the same output for both input 
combinations. States (g) and (e) are two such states: they both go to states (a & se) are 
equivalent and one of these states can be removed. The procedure of removing a state and 
replacing it by its equivalent is demonstrated in Table (2). The row with present state (g) is 
removed and state (g) is replaced by state (e) each time it occurs in the next-state columns. 
 

Table (2) 
 Reducing the State Table. 

Present 
State 

Next State Output 
x=0 x=1 x=0 x=1 

a a b 0 0 
b c d 0 0 
c a d 0 0 
d e f 0 1 
e a f 0 1 
f e f 0 1 

 
Table (3) 

 Reduced State Table. 
Present 

State 
Next State Output 

x=0 x=1 x=0 x=1 
a a b 0 0 
b c d 0 0 
c a d 0 0 
d e d 0 1 
e a d 0 1 

 
 
  
 
 
 
 

 
    Fig. (2):  
   Reduced State Diagram. 
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 Present state (f) now has next states (e and f) and outputs 0 and 1 for x=0 and x=1, 
respectively. The same next states and outputs appear in the row with present  (d). Therefore, 
states (f and d) are equivalent and state (f) can be removed and replaced by (d). The final 
reduced table is shown in Table (3). The state diagram for the reduced table consists of only 
five states and is shown in Fig. (2). This state diagram satisfies the original input-output 
specifications and will produce the required output sequence for any given input sequence. 
The following list derived from the state diagram of Fig. (2) is for the input sequence used 
previously (note that the same output sequence results, although the state sequence is 
different): 
 
State a a b c d e d d e d e a 
Input 0 1 0 1 0 1 1 0 1 0 0  

Output 0 0 0 0 0 1 1 0 1 0 0  
 
 In fact, this sequence is exactly the same as that obtained for Fig. (1), if we replace (g 
by e and f by d). 
 Checking each pair of states for possible equivalency can be done systematically by 
means of a procedure that employs an implication table. The implication table consists of 
squares, one for every suspected pair of possible equivalent states. By judicious use of the 
table, it is possible to determine all pairs of equivalent states in a state table. The use of the 
implication table for reducing the number of states in a state table is demonstrated in the next 
section. 
 The sequential circuit of this example was reduced from seven to five state. In general, 
reducing the number of states in a state table may result in a circuit with less equipment. 
However, the fact that a state table has been reduced to fewer state doesn't guarantee a 
saving in the number of flip-flops or the number of gates. 
 
Implication Table: 
 The state-reduction procedure for completely specified state tables is based on the 
algorithm that two states in a state table can be combined into one if they can be shown to be 
equivalent. Two states are equivalent if for each possible input, they give exactly the same 
output and go to the same next states or to equivalent next state. Consider for example, the 
state table shown in Table (4). The present states (a) and (b) have the same output for the 
same input. Their next states are (c and d) for x=0 and (b and a) for x=1. If we can show that 
the pair of states (c, d) are equivalent, then the pair of states (a, b) will also be equivalent 
because they will have the same or equivalent next states. When this relationship exists, we 
say that (a, b) imply (c, d). Similarly, from the last two rows of Table (4), we find that the pair of 
states (c, d) imply the pair of states (a, b). The characteristic of equivalent states is that if (a, b) 
imply (c, d) and (c, d) imply (a, b), then both pairs of states are equivalent; that  is, (a and b) 
are equivalent as well as (c and d). As a consequence, the four rows of Table (4) can be 
reduced to two rows by combining (a and b) into one state and (c and d) into a second state. 
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 The checking of each pair of states for possible equivalence in a table with a large 
number of states can be done systematically by means of an implication table. The implication 
table is a chart that consists of squares, one for every possible pair of states, that provide 
spaces for listing any possible implied states. By judicious use of the table, it is possible to 
determine all pairs of equivalent states. The state table of Table (5) will be used to illustrate 
this procedure. The implication table is shown in Fig. (3). On the left side along the vertical are 
listed all the states defined in the state table except the first, and across the bottom 
horizontally are listed all the states expect the last. The result is a display of all possible 
combinations of two states with a square placed in the intersection of a row and a column 
where the two states can be tested for equivalence. 
 Two states that are not equivalent are marked with a cross (x) in the corresponding 
square, whereas their equivalence recorded with a check mark (√). Some of the squares have 
entries of implied states that must be further investigated to determine whether they are 
equivalent or not. The step-by-step procedure of filling in the squares is as follows. First, we 
place a cross in any square corresponding to a pair of states whose outputs are not equal for 
every input. In this case, state (c) has a different output than any other state, so a cross is 
placed in the two squares of row (c) and the four squares of column (c). There are nine other 
squares in this category in the implication table. 
 

Table (4) 
 State Table to Demonstrate Equivalent States. 

Present 
State 

Next State Output 
x=0 x=1 x=0 x=1 

a c b 0 1 
b d a 0 1 
c a d 1 0 
d b d 1 0 

 
 Next, we enter in the remaining squares the pairs of states that are implied by the pair 
of states representing the squares. We do that starting from the top square in the left column 
and going down and then proceeding with the next column to the right. From the state table, 
we see that pair (a,b) imply (d,e), so (d,e) is recorded in the square defined by column (a and 
row b). We proceed in this manner until the entire table is completed. Note that states (d,e) are 
equivalent because they go to the same next state and have the some output. Therefore, a 
check mark is recorded in the square defined by column (d and row e), indicating that the two 
states are equivalent and independent of any implied pair. 
 The next step is to make successive passes through the table to determine whether 
any additional squares should be marked with a cross. A square in the table is crossed out if it 
contains at least one implied pair that is not equivalent. For example, the square defined by (a) 
and (f) is marked with a cross next to (c,d) because the pair (c,d) defines a square that 
contains a cross. This procedure is repeated until no additional squares can be crossed out. 
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Finally, all the squares that have no crosses are recorded with check marks. These squares 
define pairs of equivalent states. In this example, the equivalent states are: 

(a,b) (d,e) (d,g) (e,g) 
 

Table (5) 
 State Table to be Reduced. 

Present 
State 

Next State Output 
x=0 x=1 x=0 x=1 

a d a 0 0 
b e a 0 0 
c g f 0 1 
d a d 1 0 
e a d 1 0 
f c b 0 0 
g a e 1 0 

 
 

b (d,e) √      

c x x     

d x x x    

e x x x √   

f 
(c,d) x 

(a,b) 

(c,e) x 

(a,b) 
x x x 

 

g x x x (d,e) √ (d,e) √ x 

 a b c d e f 

 
Fig. (3): Implication table. 

  
 We now combine pairs of states into larger groups of equivalent states. The last three 
pairs can be combined into a set of three equivalent states (d,e,g) because each one of the 
states in the group is equivalent to the other two. The final partition of the states consists of the 
equivalent states found from the implication table, together with all the remaining states in the 
state table that are not equivalent to any other state. 

(a,b) (c) (d,e,g)  (f) 
 This means that Table (5) can be reduced from seven states to four states, one for 
each member of the above partition. The reduced table is obtained by replacing state (b by a 
and states e and g by d).  
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Table (6) 
 Reduced State Table. 

Present 
State 

Next State Output 
x=0 x=1 x=0 x=1 

a d a 0 0 
c d f 0 1 
d a d 1 0 
f c a 0 0 

 
 
Merger Diagram: 
 Having found all the compatible pairs, the next step is to find larger sets of states that 
are compatible. The maximal compatible is a group of compatibles that contains all the 
possible combinations of compatible states. The maximal compatible can be obtained from a 
merger diagram, as shown in Fig. (4). The merger diagram is a graph in which each state is 
represented by a dot placed along the circumference of a circle. Lines are drawn between any 
two corresponding dots that form a compatible pair. All possible compatibles can be obtained 
from the merger diagram by observing the geometrical patterns in which states are connected 
to each other. An isolated dot represents a state that is not compatible to any other state. A 
line represents a compatible pair. A triangle constitutes a compatible with three states. An n-
state compatible is represented in the merger diagram by an n-state polygon with all its 
diagonals connected.  
 The merger diagram of Fig. (4-a) is obtained from the list of compatible pairs derived 
from the implication table. There are seven straight lines connecting the dots, one for each 
compatible pair. The lines from a geometrical pattern consisting of two triangles connecting (a, 
c, d) and (b, e, f) and a line (a, b). The maximal compatibles are: 

(a,b)  (a,c,d)  (b,e,f) 
 Fig. (4-b) shows the merger diagram of an 8-state. The geometrical patterns are a 
rectangle with its two diagonals connected to form the 4-state compatible (a, b, e, f), a triangle 
(b, c, h), a line (c, d), and a single state (g) that is not compatible to any other state. The 
maximal compatibles are: 

(a,b,e,f) (b,c,h)   (c,d)  (g) 
  
 
 
 

 
 
 
 
 

Fig. (4): Merger Diagram. 
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Homework: 
(1) Using the implication table to reduce the state diagram shown in Fig. (1). 
(2) Using the reduction state to reduce the state Table (5). 
(3) Using the merger diagram to find the maximum compatibles for the implication table 
 shown in Fig. (3). 


