عنوان البحث(Papers / Research Title)
Mobile Robot Control Using Fuzzy Logic
الناشر \ المحرر \ الكاتب (Author / Editor / Publisher)
زينب فلاح حسن الكيم
Citation Information
زينب,فلاح,حسن,الكيم ,Mobile Robot Control Using Fuzzy Logic , Time 25/04/2021 15:55:25 : كلية العلوم للبنات
وصف الابستركت (Abstract)
intelligent fuzzy controller for mobile robot in various (known and unknown) environments is build to control of mobile robot
الوصف الكامل (Full Abstract)
build to control of mobile robot. A successful way of structuring the navigation problem treat with the issues of individual behavior design and action coordination. The inputs to the proposed fuzzy control method consist of a heading angle between a robot and a specified target and the distances between the robot and the obstacles to the left, front, and right to its locations, being acquired by sensors. The output of controller are the speeds of right and left wheels. Simulation results verified the effectiveness of the controller. Key words : Mobile Robot , Environment ,Fuzzy Logic , Obstacle avoidance,. الخلاصة: في هذا العمل مسيطر مضبب ذكي للروبوت المتحرك في مختلف البيئات (معروفة و غير معروفة) يتم بناؤه للسيطرة على الروبوت المتحرك.الطريقة الناجحة لتشكيل مسألة القيادة مرتبطة مع مسائل تصميم سلوك مستقل وتنسيق الفعاليات. المدخلات لطريقة المسيطر المضبب المفترض تتكون من الزاوية الرأسية بين الروبوت والهدف المحدد والمسافات بين الروبوت و العوائق إلى مواقع اليسار ، اليمين و الأمام للروبوت ، المكتسبة بواسطة المتحسسات .المخرجات للمسيطر هي سرع العجلات اليمنى واليسرى .نتائج المحاكاة تؤكد فعالية هذه المسيطر . الكلمات المفتاحية: الروبوت، البيئة، المنطق الضبابي، تجنب العوائق. 1 Introduction Current developments of mobile robot have attracted the attention of researchers in the areas of engineering, computer science, mining and others. This is due to the high potential of mobile robots application. Autonomous mobile robots are robots which can perform desired tasks in unstructured environments without continuous human guidance [Frank and Goswami, 2004;Ibrahim and Fernandes, 2004];[ Kim and Cho, 2006];[Waterman, 1989]. Many kinds of robots are autonomous. A fully autonomous robot in the real world has the ability to: • Gain information about the environment. • Travel from one point to another point, without human navigation assistance. • Avoid situations that are harmful to people. • Repair itself without outside assistance. A robot may also be able to learn autonomously. Autonomous learning includes the ability to: • Learn or gain new capabilities without outside assistance. • Adjust strategies based on the surroundings. • Adapt to surroundings without outside assistance. Navigation for mobile robots can be well-defined in mathematical (geometrical) terms. It also involved many distinct sensory inputs and computational processes. Elementary decisions like turn left, turn right, run or stop are made on the basis of thousands of incoming signals [David, 1990; Gallistel, 1990; Parhi, 2005]. Navigation is traditionally defined as the process of determining and maintaining a trajectory to a goal location [Gallistel, 1990]. Humans have uncertain and imprecise information. The main advantages of a fuzzy navigation strategy lie in the ability to extract heuristic rules from human experience, and to obviate the need for an analytical model of the process [Seraji and Howard, 2002 ]. In this search, Fuzzy Logic System (FLS) is used to produce the control inputs for the robot with inputs from various sensors. Sensor signals are fed to the FLS, and the output
تحميل الملف المرفق Download Attached File
|
|