معلومات البحث الكاملة في مستودع بيانات الجامعة

عنوان البحث(Papers / Research Title)


On preparacompactness in bitopological spaces


الناشر \ المحرر \ الكاتب (Author / Editor / Publisher)

 
لؤي عبد الهاني جبار السويدي

Citation Information


لؤي,عبد,الهاني,جبار,السويدي , On preparacompactness in bitopological spaces , Time 5/8/2011 10:10:48 AM : كلية التربية للعلوم الصرفة

وصف الابستركت (Abstract)


On preparacompactness in bitopological spaces

الوصف الكامل (Full Abstract)


Abstract
 J. Dieudonne [8], introduced the notions of paracompactness and Martin M. K. [9] , introduced the notions of paracompactness in bitopological spaces and K. AL-Zoubi and S. AL-Ghour [10], introduced the notions of P3-paracompactness of  topological space in terms of preopen sets .In this paper, we introduce paracompactness in bitopological spaces in terms of ij-preopen sets . We obtain various characterizations, properties of paracompactness and its relationships with other types of spaces.
Key words: ij-preparacompact, ij-precontinuous, separation axioms .
 
 Introduction
The concepts of regular open , regular closed , semiopen , semiclosed , and preopen sets have been introduced by many authors in a topological space ( cf. [ 1-4] ). These concepts are extended to bitopological spaces by many authors ( cf. [5-7]) .
Throughout the present paper ( X , ) and ( Y,  ) ( or simple X and Y ) denote bitopological spaces . when A is a subset of a space X , we shall denote the closure of A and the interior of A in ( X ,   ) by  -clA and  -intA , respectively, where i= 1,2 , and i,j = 1,2  ; i j .
A subset A of X is said to be ij- preopen ( resp. ij-semiopen ,ij-regular open ,   ij-regular closed and ij-preclosed ) if ,  and  . The family of all ij-semiopen ( resp. ij- regular open and ij- preopen ) sets of X is denoted by  ij-SO(X) ( resp. ij-RO(X) and ij-PO(X) ) . The intersection of all ij- preclosed sets which contain A is called the ij- preclosure of A and is denoted by ij-PclA . Obviously , ij-PclA is the smallest ij-preclosed set which contains A .
 
Definition 1.1 .
A bitopological space  is called ij-locally indiscrete if every   subset of X is  .
 
Definition 1.2 .
 
 A collection  of subsets of  X is called ,(1) locally finite with respect to the topology  ( respectively , ij-strongly locally finite ) , if for each   , there exists   ( respectively,  ) containing x and  which intersects at most finitely many members of  ;(2) ij-P-locally finite if for each  , there exists a ij- preopen set   in X containing  x and  which intersects at most finitely many members of  .

تحميل الملف المرفق Download Attached File

تحميل الملف من سيرفر شبكة جامعة بابل (Paper Link on Network Server) repository publications

البحث في الموقع

Authors, Titles, Abstracts

Full Text




خيارات العرض والخدمات


وصلات مرتبطة بهذا البحث