معلومات البحث الكاملة في مستودع بيانات الجامعة

عنوان البحث(Papers / Research Title)


Feebly pT(i,k)-spaces in bitopological spaces


الناشر \ المحرر \ الكاتب (Author / Editor / Publisher)

 
زاهر دبيس عزاوي النافعي

Citation Information


زاهر,دبيس,عزاوي,النافعي ,Feebly pT(i,k)-spaces in bitopological spaces , Time 5/10/2011 8:17:45 AM : كلية التربية للعلوم الصرفة

وصف الابستركت (Abstract)


In this research we studied a PT(i,k)-spaces by using feebly sets which defined by maheshwari

الوصف الكامل (Full Abstract)


Feebly pT(i,k)-spaces in bitopological spaces
Zahir Dobeas AL- NafieBabylon University2006
Abstract
In this research we studied a PT(i,k)-spaces by using feebly sets which defined by maheshwari and we find a relation between these spaces and we called it a feebly PT(i,k)-spaces.
 In this research we studied a PT(i,k)-spaces by using feebly sets which defined by maheshwari and we find a relation between these spaces and we called it a feebly PT(i,k)-spaces.
 
Introduction
S.N Maheshwari (1990) define a feebly  open set in a topological space . A set A is said to be feebly open  (Gyn   and  Lee ,1984)  if there exist an open set  O  in X such that  O?A?scl(O)    where scl denotes the closure set in the topological space .
 
In bitopological space (X,T1,T2)  M. Jelic (1994) give a new definition of pair wise T(i,k))-spaces . A bitopological space X is said to be a pair wise T(i,k) –space if for every x?X and every pTk-open  cover U of X there exist a pTi –open  V  of X and a u?U  such that st(x,v)?U , i,k?{1,2,3} ,and it is  denoted by pT(i, k)-space .In this paper we shall introduce a new definition of pT(i, k)-space by using feebly open set and we shall investigate the relation between these spaces .
 
preliminaries
In this section we shall investigate some properties of feebly open sets in bitopological spaces and give a new definition of pTi-cover by using a feebly open set and discuss a relation between  them.
Remark(2-1) (Gyn   and  Lee ,1984)   Every open set is feebly –open set and the converse is not true.
Theorem (2-2) (Gyn   and  Lee ,1984)  Any union of feebly –open sets is feebly open.
Definition(2-3) (Gyn   and  Lee ,1984)  A point p in X is said to be feebly interior point of A if A is feebly neighborhood of p , and the set of all feebly interior points  of A is denoted by  int(A)
Definition(2-4) (Gyn   and  Lee ,1984)  A set A in a topological space is said to be feebly–closed if it is complement is feebly open.
Remark(2-5) S.N Maheshwari (1990) A set A in a topological space is  feebly–open iff  fint(A)= A
Remark(2-6) (Gyn   and  Lee ,1984)

تحميل الملف المرفق Download Attached File

تحميل الملف من سيرفر شبكة جامعة بابل (Paper Link on Network Server) repository publications

البحث في الموقع

Authors, Titles, Abstracts

Full Text




خيارات العرض والخدمات


وصلات مرتبطة بهذا البحث