معلومات البحث الكاملة في مستودع بيانات الجامعة

عنوان البحث(Papers / Research Title)


On preparacompactness in bitopological spaces


الناشر \ المحرر \ الكاتب (Author / Editor / Publisher)

 
لؤي عبد الهاني جبار السويدي

Citation Information


لؤي,عبد,الهاني,جبار,السويدي ,On preparacompactness in bitopological spaces , Time 14/12/2016 10:11:52 : كلية التربية للعلوم الصرفة

وصف الابستركت (Abstract)


we introduce paracompactness in bitopological spaces in terms of ij-preopen sets . We obtain various characterizations, properties of paracompactness and its relationships with

الوصف الكامل (Full Abstract)

The concepts of regular open , regular closed , semiopen , semiclosed , and preopen
sets have been introduced by many authors in a topological space ( cf. [ 1-4] ). These
concepts are extended to bitopological spaces by many authors ( cf. [5-7]) .
Throughout the present paper ( X , 1 2 ? ,? ) and ( Y, 1 2 ? ,? ) ( or simple X and Y )
denote bitopological spaces . when A is a subset of a space X , we shall denote the
closure of A and the interior of A in ( X , i ? ) by i ? -clA and i ? -intA , respectively,
where i= 1,2 , and i,j = 1,2 ; i ? j .
A subset A of X is said to be ij- preopen ( resp. ij-semiopen ,ij-regular open ,
ij-regular closed and ij-preclosed ) if
A int( clA) ( resp. A cl( int A), i j i j ?? ? ? ? ?? ? ? ? A int( clA) i j ?? ? ? ? ,
A cl( int A), j i ?? ? ? ? and cl( int A) A ) j i ? ? ? ? ? . The family of all ij-semiopen (
resp. ij- regular open and ij- preopen ) sets of X is denoted by ij-SO(X) ( resp. ij-
RO(X) and ij-PO(X) ) . The intersection of all ij- preclosed sets which contain A is
called the ij- preclosure of A and is denoted by ij-PclA . Obviously , ij-PclA is the
smallest ij-preclosed set which contains

تحميل الملف المرفق Download Attached File

تحميل الملف من سيرفر شبكة جامعة بابل (Paper Link on Network Server) repository publications

البحث في الموقع

Authors, Titles, Abstracts

Full Text




خيارات العرض والخدمات


وصلات مرتبطة بهذا البحث